首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficient characterization of semiconductor nanowires having complex dopant profiles or heterostructures is critical to fully understand these materials and the devices built from them. Existing electrical characterization techniques are slow and laborious, particularly for multisegment nanowires, and impede the statistical understanding of highly variable samples. Here, it is shown that electro‐orientation spectroscopy (EOS)—a high‐throughput, noncontact method for statistically characterizing the electrical properties of entire nanowire ensembles—can determine the conductivity and dimensions of two distinct segments in individual Si nanowires with axially encoded dopant profiles. This analysis combines experimental measurements and computational simulations to determine the electrical conductivity of the nominally undoped segment of two‐segment Si nanowires, as well as the ratio of the segment lengths. The efficacy of this approach is demonstrated by comparing results generated by EOS with conventional four‐point‐probe measurements. This work provides new insights into the control and variability of semiconductor nanowires for electronic applications and is a critical first step toward the high‐throughput interrogation of complete nanowire‐based devices.  相似文献   

2.
We describe here a new system involving direct force measurements between biomolecules that could be used in biomedical diagnostics. The method consists in the use of magnetic emulsion droplets bearing immobilized single stranded DNA fragments (ssDNA, Deoxyribo Nucleic Acid). The immobilized ssDNA fragments are able to recognize complementary DNA molecules via specific hydrogen binding (hybridization process). The ssDNA used in this study are 32 bases oligonucleotides functionalized at their 5' extremity with biotin and then immobilized onto the magnetic nanodroplets via interactions with streptavidin previously chemically grafted onto the nanomagnetic support. The aim of this work is to evaluate the possible detection of captured nucleic acid targets via single force measurements as an alternative to classical ELOSA (Enzyme Linked Oligo Sorbent Assay). The obtained results are discussed mainly in terms of electrostatic interactions.  相似文献   

3.
Carbon nanotubes have become promising functional materials for the development of advanced electrochemical biosensors with novel features which could promote electron-transfer with various redox active biomolecules. This paper presents the detection of Salmonella enterica serovar Typhimurium using chemically modified single walled carbon nanotubes (SWNTs) with single stranded DNA (ssDNA) on a polished glassy carbon electrode. Hybridization with the corresponding complementary ssDNA has shown a shift in the impedance studies due to a higher charge transfer in ssDNA. The developed biosensor has revealed an excellent specificity for the appropriate targeted DNA strand. The methodologies to prepare and functionalize the electrode could be adopted in the development of DNA hybridization biosensor.  相似文献   

4.
We fabricated ZnS nanocrystals decorated single-walled carbon nanotube (SWNT) based chemiresistive sensor for DNA. Since the charge transfer in the hybrid nanostructures is considered to be responsible for many of their unique properties, the role of ZnS nanocrystals toward its performance in DNA sensor was delineated. It was found that the free carboxyl groups surrounding the ZnS nanocrystals allowed large loading of single strand DNA (ssDNA) probe that provided an ease of hybridization with target complementary c-ssDNA resulting in large electron transfer to SWNT. Thus it provided a significant improvement in sensitivity toward c-ssDNA as compared to bare SWNT based DNA sensor.  相似文献   

5.
DNA self-assembly provides a “bottom-up” route to fabricating complex shapes on the nanometer scale. However, each structure needs to be designed separately and carried out by professionally trained technicians, which seriously restricts its development and application. Herein, a point-and-shoot strategy based on enzyme-assisted DNA “paper-cutting” to construct planar DNA nanostructures using the same DNA origami as the template is reported. Precisely modeling the shapes with high precision in the strategy based on each staple strand of the desired shape structure hybridizes with its nearest neighbor fragments from the long scaffold strand. As a result, some planar DNA nanostructures by one-pot annealing the long scaffold strand and selected staple strands is constructed. The point-and-shoot strategy of avoiding DNA origami staple strands’ re-designing based on different shapes breaks through the shape complexity limitation of the planar DNA nanostructures and enhances the simplicity of design and operation. Overall, the strategy's simple operability and great generality enable it to act as a candidate tool for manufacturing DNA nanostructures.  相似文献   

6.
This paper describes a class of three component hybrid nanowires templated by DNA directed self-assembly. Through the modification of carbon nanotube (CNT) termini with synthetic DNA oligonucleotides, gold nanoparticles are delivered, via DNA hybridization, to CNT tips that then serve as growth sites for zinc oxide (ZnO) nanowires. The structures we have generated using DNA templating represent an advance toward building higher order sequenced one dimensional nanostructures with rational control.  相似文献   

7.
电纺丝制备纳米纤维的研究进展   总被引:3,自引:0,他引:3  
文中扼要回顾近年来电纺丝技术研究进展,包括:电纺丝工作原理和部分关键设备;控制尺寸、结构、取向及复合材料制备等;探讨连续化生产和组装纳米纤维;典型应用领域及电纺丝技术展望。  相似文献   

8.
We describe the incorporation of multiple fluorophores into a single stranded DNA (ssDNA) chain using terminal deoxynucleotidyl transferase (TdT), a template-independent DNA polymerase that catalyzes the sequential addition of deoxynucleotides (dNTPs) at the 3'-OH group of an oligonucleotide primer; we term this methodology surface initiated enzymatic polymerization (SIEP) of DNA. We found that long (>1 Kb) ssDNA homopolymer can be grown by SIEP, and that the length of the ssDNA product is determined by the monomer to oligonucleotide initiator ratio. We observed efficient initiation (≥50%) and narrow polydispersity of the extended product when fluorescently labeled nucleotides are incorporated. TdT's ability to incorporate fluorescent dNTPs into a ssDNA chain was characterized by examining the effect of the molar ratios of fluorescent dNTP to natural dNTP on the degree of fluorophore incorporation and the length of the polymerized DNA strand. These experiments allowed us to optimize the polymerization conditions to incorporate up to ~50 fluorescent Cy3-labeled dNTPs per kilobase into a ssDNA chain. With the goal of using TdT as an on-chip labeling method, we also quantified TdT mediated signal amplification on the surface by immobilizing ssDNA oligonucleotide initiators on a glass surface followed by SIEP of DNA. The incorporation of multiple fluorophores into the extended DNA chain by SIEP translated to a ~45 fold signal amplification compared to the incorporation of a single fluorophore. SIEP was then employed to detect hybridization of DNA, by the posthybridization, on-chip polymerization of fluorescently labeled ssDNA that was grown from the 3'-OH of target strands that hybridized to DNA probes that were printed on a surface. A dose-response curve for detection of DNA hybridization by SIEP was generated, with a ~1 pM limit of detection and a linear dynamic range of 2 logs.  相似文献   

9.
X Zhou  CM Shade  AL Schmucker  KA Brown  S He  F Boey  J Ma  H Zhang  CA Mirkin 《Nano letters》2012,12(9):4734-4737
We report a simple and highly efficient method for creating graphene nanostructures with gaps that can be controlled on the sub-10 nm length scale by utilizing etch masks comprised of electrochemically synthesized multisegmented metal nanowires. This method involves depositing striped nanowires with Au and Ni segments on a graphene-coated substrate, chemically etching the Ni segments, and using a reactive ion etch to remove the graphene not protected by the remaining Au segments. Graphene nanoribbons with gaps as small as 6 nm are fabricated and characterized with atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. The high level of control afforded by electrochemical synthesis of the nanowires allows us to specify the dimensions of the nanoribbon, as well as the number, location, and size of nanogaps within the nanoribbon. In addition, the generality of this technique is demonstrated by creating silicon nanostructures with nanogaps.  相似文献   

10.
An affinity capillary electrophoresis method was developed to determine a binding constant between a peptide nucleic acid (PNA) and a hairpin-structured DNA. A diblock copolymer composed of PNA and polyethylene glycol (PEG) was synthesized as a novel affinity probe. The base sequence of the probe's PNA segment was complementary to a hairpin-structured region of a 60-base single-stranded DNA (ssDNA). Upon applying a voltage, the DNA hairpin migrated slowly compared to a random sequence ssDNA in the presence of the PNA probe. This retardation was induced by strand invasion of the PNA into the DNA hairpin to form a hybridized complex, where the PEG segment received a large amount of hydrodynamic friction during electrophoresis. The binding constant between the PNA probe and the DNA hairpin was easily determined by mobility analysis. This simple method would be potentially beneficial in studying binding behaviors of various artificial nucleotides to natural DNA or RNA.  相似文献   

11.
Production of double strand breaks (DSBs) and double-stranded DNA fragments after irradiation with high energy nitrogen ions was simulated with stochastic track generation and a high-order chromatin structure (HOCS) model representing a segment of interphase chromosome. The non-random distribution of DNA fragments is predicted for irradiation of HOCS. Agreement with the experimental data is obtained. The influence of HOCS and the role of the background component in DNA fragment distributions are discussed.  相似文献   

12.
A barcode magnetic nanowire typically comprises a multilayer magnetic structure in a single body with more than one segment type. Interestingly, due to selective functionalization and novel interactions between the layers, it has attracted significant attention, particularly in bioengineering. However, analyzing the magnetic properties at the individual nanowire level remains challenging. Herein, the characterization of a single magnetic nanowire is investigated at room temperature under ambient conditions based on magnetic images obtained via wide-field quantum microscopy with nitrogen-vacancy centers in diamond. Consequently, critical magnetic properties of a single nanowire can be extracted, such as saturation magnetization and coercivity, by comparing the experimental result with that of micromagnetic simulation. This study opens up the possibility for a versatile in situ characterization method suited to individual magnetic nanowires.  相似文献   

13.
We report the catalyst-free synthesis of hierarchical pure ZnO nanostructures with 6-fold structural symmetry by two-step thermal evaporation process. At the first step, the hexagonal-shaped nanowires consisting of a great deal of Zn and little oxide were prepared via the layer-by-layer growth mechanism; and at the second step, hierarchical pure ZnO nanostructures were synthesized by evaporating the Zn source on the basis of the step-one made substrate. Scanning electron microscopy, transmission electron microscope images, and the corresponding selected area electron diffraction pattern have been utilized to reveal the screw dislocation growth mechanism, through which the single crystal ZnO nanorods are epitaxially grown from the side-wall of central axial nanowires. Raman and photoluminescence spectra further indicate that, for the hierarchical ZnO nanostructures, the ultraviolet peak is related to the free exciton recombination, while the oxygen vacancies and high surface-to-volume ratio are responsible for the strong green peak emission.  相似文献   

14.
DNA molecules have been widely recognized as promising building blocks for constructing functional nanostructures with two main features, that is, self‐assembly and rich chemical functionality. The intrinsic feature size of DNA makes it attractive for creating versatile nanostructures. Moreover, the ease of access to tune the surface of DNA by chemical functionalization offers numerous opportunities for many applications. Herein, a simple yet robust strategy is developed to yield the self‐assembly of DNA by exploiting controlled evaporative assembly of DNA solution in a unique confined geometry. Intriguingly, depending on the concentration of DNA solution, highly aligned nanostructured fibrillar‐like arrays and well‐positioned concentric ring‐like superstructures composed of DNAs are formed. Subsequently, the ring‐like negatively charged DNA superstructures are employed as template to produce conductive organic nanowires on a silicon substrate by complexing with a positively charged conjugated polyelectrolyte poly[9,9‐bis(6′‐N,N,N‐trimethylammoniumhexyl)fluorene dibromide] (PF2) through the strong electrostatic interaction. Finally, a monolithic integration of aligned arrays of DNA‐templated PF2 nanowires to yield two DNA/PF2‐based devices is demonstrated. It is envisioned that this strategy can be readily extended to pattern other biomolecules and may render a broad range of potential applications from the nucleotide sequence and hybridization as recognition events to transducing elements in chemical sensors.  相似文献   

15.
Uniform bimetallic nanowires, tunable in size, have been grown on artificial DNA templates via a two-step metallization process. Alkyne-modified cytosines were incorporated into 900-base-pair polymerase-chain-reaction fragments. The alkyne modifications serve as addressable metal-binding sites after conversion to a sugar triazole derivative via click chemistry. Reaction of the Tollens reagent with these sugar-coated DNA duplexes generates Ag0 metallization centers around the sugar modification sites of the DNA. After a subsequent enhancement step using gold, nanowires < or = 10 nm in diameter with a homogeneous surface profile were obtained. Furthermore, the advantage of this two-step procedure lies in the high selectivity of the process, due to the exact spatial control of modified DNA base incorporation and hence the confinement of metallization centers at addressable sites. Besides experiments on a membrane as a proof for the selectivity of the method, atomic force microscopy (AFM) studies of the wires produced on Si-SiO2 surfaces are discussed. Furthermore, we demonstrate time-dependent metallization experiments, monitored by AFM.  相似文献   

16.
Patil AJ  Li M  Dujardin E  Mann S 《Nano letters》2007,7(9):2660-2665
Nanosheets or nanoclusters of aminopropyl-functionalized magnesium phyllosilicate (AMP) were prepared in water by exfoliation and used as structural building blocks for the preparation of DNA-based hybrid nanostructures in the form of ordered mesolamellar nanocomposites or highly elongated nanowires, respectively. The former consisted of alternating layers of single sheets of AMP interspaced with intercalated monolayers of intact double-stranded DNA molecules of relatively short length ( approximately 700 base pairs) that were accessible to small molecules such as ethidium bromide. In contrast, the nanowires comprised isolated micrometer-long molecules of lambda-DNA or plasmid DNA that were sheathed in an ultrathin organoclay layer and which were either protected from or remained accessible to endonuclease-mediated clipping depending on the extent of biomolecule wrapping. Both types of hybrid nanostructures showed a marked increase in the DNA melting (denaturation) temperature, indicating significant thermal stabilization of the confined biomolecules. Our results suggest that nanoscale building blocks derived from organically modified inorganic clays could be useful agents for enhancing the chemical, thermal, and mechanical stability of isolated molecules or ensembles of DNA. Such constructs should have increased potential as functional components in bionanotechnology and nonviral gene transfection.  相似文献   

17.
By using high concentrations of buffer, electroosmotic flow within uncoated channels of a microfluidic chip was minimized, allowing the free solution electrophoretic separation of DNA. More importantly, because of the ability to efficiently dissipate heat within these channels, field strengths as high as 600 V/cm could be applied with minimal Joule heating (<2 degrees C). As a result of the higher field strengths, separations within an 8-cm-long channel were achieved within a few minutes. However, when the electrophoretic separation of single-stranded DNA (ssDNA) less than 22 bases in length was performed, containing the fluorophore Texas Red as an end label, more than the expected single peak was observed at this high electric field. On the other hand, the free solution electrophoresis of a double-stranded DNA (dsDNA) consisting of a random sequence did exhibit the expected single peak. The appearance of these multiple peaks for ssDNA is shown to be dependent upon the base content and sequence of the ssDNA as well as on the chemical structure of the fluorophore used to tag the DNA for detection. Specifically, the peaks can be attributed to different secondary structures that result either from hydrophobic interactions between the DNA bases and an uncharged fluorescent dye or from G-quadruplexes within guanine-rich strands.  相似文献   

18.
白云石锻粉制备碱式氯化镁纳米线的研究(英文)   总被引:1,自引:0,他引:1  
碱式氯化镁(MHCH)纳米线是一种重要的高分子填充剂及一维纳米结构的前驱体.本文以白云岩锻粉为原料,利用水热反应制备了MHCH纳米线.通过XRD、SEM和FT-IR表征表明所制备的MHCH是完好结晶的Mg10(OH)18Cl2.5H2O纳米线,其直径和长度分别为50~120 nm和数十微米.TG-DTA测试表明,MHCH的热分解分为两步,在加热过程中MHCH始终处于吸热状态.白云石锻粉中的MgO和CaO与氯化镁的摩尔比R对MHCH的结构和形貌具有重要的影响:MHCH的长径比随R的增大而减小,而当R大于0.5时,体系中将出现Mg(OH)2;制备MHCH的最佳摩尔比R在0.025和0.075之间.由于MHCH用途广泛,本研究将拓宽白云石的潜在应用价值.  相似文献   

19.
Platinum nanoparticles and nanowires have been synthesized inside zeolite mordenite using a solid-state reduction method. Tetrammine platinum nitrate was introduced into the pores via incipient wetness impregnation and it was reduced using powder sodium borohydride. With this method it was possible to obtain single crystal nanowires along the edges of the zeolite particle. The molar ratio of the reducing agent to platinum atoms was a critical parameter for the formation of either uniform nanoparticles or nanowires. Using a regular aqueous sodium borohydride solution reduction it was not possible to obtain nanowires in this zeolite. To the best of the author's knowledge this is the first time sodium borohydride in its solid form is used as a reducing agent to form nanostructures and this is also the first time a solid-state method is used to form nanostructures in a zeolite.  相似文献   

20.
This paper describes a powerful and facile synthesis of CdSe hollow nanostructures via a sacrificial template method employing the Kirkendall diffusion effect for void formation and an anion exchange reaction for selenization. The CdSe hollow nanowires and nanoparticles were easily transformed from a sacrificial template of CdO nanowires that were formed by thermal Ostwald ripening. The distinctive structures of CdO sacrificial templates were developed through thermodynamically spontaneous process. The morphology of each CdSe nanostructure could be controlled by one of each CdO sacrificial template which was calcined at several different temperatures. Their microstructure was analyzed by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffraction, and their optical properties were compared using light absorption. The suggested process for synthesis of hollow nanostructures could also be applied to the formation of other hollow chalcogenide compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号