首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the porous multiwall carbon nanotube (MWCNT) foams possessing three-dimensional (3D) scaffold structures have been introduced into polydimethylsiloxane (PDMS) for enhancing the overall thermal conductivity (TC). This unique interconnected structure of freeze-dried MWCNT foams can provide thermally conductive pathways leading to higher TC. The TC of 3D MWCNT and PDMS composites can reach 0.82 W/m K, which is about 455% that of pure PDMS, and 300% higher than that of composites prepared from traditional blending process. The obtained polymer composites not only exhibit superior mechanical properties but also dimensional stability. To evaluate the performance of thermal management, the LED modulus incorporated with the 3D MWCNT/PDMS composite as heat sink is also fabricated. The composites display much faster and higher temperature rise than the pristine PDMS matrix, suggestive of its better thermal dissipation. These results imply that the as-developed 3D-MWCNT/PDMS composite can be a good candidate in thermal interface for thermal management of electronic devices.  相似文献   

2.
Liu X  Han S  Zhou C 《Nano letters》2006,6(1):34-39
We present a novel nanotube-on-insulator (NOI) approach for producing high-yield nanotube devices based on aligned single-walled carbon nanotubes. First, we managed to grow aligned nanotube arrays with controlled density on crystalline, insulating sapphire substrates, which bear analogy to industry-adopted silicon-on-insulator substrates. On the basis of the nanotube arrays, we demonstrated registration-free fabrication of both top-gated and polymer-electrolyte-gated field-effect transistors with minimized parasitic capacitance. In addition, we have developed a way to transfer these aligned nanotube arrays to flexible substrates successfully. Our approach has great potential for high-density, large-scale integrated systems based on carbon nanotubes for both micro- and flexible electronics.  相似文献   

3.
Transparent, elastic conductors are essential components of electronic and optoelectronic devices that facilitate human interaction and biofeedback, such as interactive electronics, implantable medical devices and robotic systems with human-like sensing capabilities. The availability of conducting thin films with these properties could lead to the development of skin-like sensors that stretch reversibly, sense pressure (not just touch), bend into hairpin turns, integrate with collapsible, stretchable and mechanically robust displays and solar cells, and also wrap around non-planar and biological surfaces such as skin and organs, without wrinkling. We report transparent, conducting spray-deposited films of single-walled carbon nanotubes that can be rendered stretchable by applying strain along each axis, and then releasing this strain. This process produces spring-like structures in the nanotubes that accommodate strains of up to 150% and demonstrate conductivities as high as 2,200?S?cm(-1) in the stretched state. We also use the nanotube films as electrodes in arrays of transparent, stretchable capacitors, which behave as pressure and strain sensors.  相似文献   

4.
We report on a method to preferentially align multiwall carbon nanotubes (MWCNTs) in a liquid crystalline matrix to form stable composite thin films. The liquid crystalline monomeric chains can be crosslinked to form acrylate bridges, thereby retaining the nanotube alignment. Further post-treatment by ozone etching of the composite films leads to an increase in bulk conductivity, leading to higher emission currents when examined under conducting scanning probe microscopy. The described methodology may facilitate device manufacture where electron emission from nanosized tips is important in the creation of new display devices.  相似文献   

5.
The anisotropic thermal diffusivity of aligned carbon nanotube-polymer composites was determined using a photothermoelectric technique. The composites were obtained by infiltrating poly-dimethyl siloxane (PDMS) in aligned multiwall CNT arrays grown by chemical vapor deposition on silicon substrates. The thermal diffusivities are insensitive to temperature in the range of 180 K-300 K. The thermal diffusivity values across the alignment direction are approximately 2-4 times smaller than along the alignment direction and larger than effective media theory predictions using reported values for the thermal diffusivity of millimeter thick aligned multiwall carbon nanotube arrays. The effective room temperature thermal conductivity of the composite along the carbon nanotube alignment direction is at least 6X larger than the thermal conductivity of the polymer matrix and is in good agreement with the effective media predictions. This work indicates that infiltration of long and aligned carbon nanotube arrays is currently the most efficient method to obtain high thermal conductivity polymer composites.  相似文献   

6.
Energy harvesting triboelectric nanogenerators (TENGs) to scavenge unused mechanical energy have received significant attention in this decade. Herein, the development of reduced graphene oxide (rGO):polypyrrole (PPy) hybrid-modified polydimethylsiloxane (PDMS) as TENG for various device applications is reported. The bulk of PDMS is altered by different fillers such as rGO, PPy, and the binary hybrids of rGO and PPy with varying weight ratios. Among various PDMS composites, 1 wt% of 1:8 rGO:PPy–PDMS composite exhibits higher TENG responses than other PDMS composite. The superior TENG performances of 1 wt% 1:8 rGO:PPy–PDMS composite are attributed to the formation of intensified negative charges inside the PDMS matrix. This charge intensification in the composite is due to various mechanisms, including the charge trapping ability of rGO:PPy filler, microcapacitor formation by introducing hybrid filler in the system with proper conducting networks, and the electron-donating nature of PPy conducting polymer. A 3D stacked device proposed using 1 wt% 1:8 rGO:PPy–PDMS composite delivered a short-circuit current of 16 μA and an open-circuit potential of 60 V by simple palm pressing. Also, the ability of the stacked device for charging/powering portable devices and light-emitting diodes is demonstrated.  相似文献   

7.
Nanocarbon electronic conductors combined with pseudocapacitive materials, such as conducting polymers, display outstanding electrochemical properties and mechanical flexibility. These characteristics enable the fabrication of flexible electrodes for energy‐storage devices; that is, supercapacitors that are wearable or can be formed into shapes that are easily integrated into vehicle parts. To date, most nanocarbon materials such as nanofibers are randomly dispersed as a network in a flexible matrix. This morphology inhibits ion transport, particularly under the high current density necessary for devices requiring high power density. Novel flexible densified horizontally aligned carbon nanotube arrays (HACNTs) with controlled nanomorphology for improved ion transport are introduced and combined with conformally coated poly(3‐methylthiophene) (P3MT) conducting polymer to impart pseudocapacitance. The resulting P3MT/HACNT nanocomposite electrodes exhibit high areal capacitance of 3.1 F cm?2 at 5 mA cm?2, with areal capacitance remaining at 1.8 F cm?2 even at a current density of 200 mA cm?2. The asymmetric supercapacitor cell also delivers more than 1–2 orders of magnitude improvement in both areal energy and power density over state‐of‐the‐art cells. Furthermore, little change in cell performance is observed under high strain, demonstrating the mechanical and electrochemical stability of the electrodes.  相似文献   

8.
聚二甲基硅氧烷(PDMS)薄膜是基于静电效应的驻极体基微振动传感器和能量采集器中常用的弹性材料,但其相对介电常数偏低,严重阻碍了相关器件工作效率的提高.针对这一问题,本研究提出了一种添加碳纳米管(CNT)提高其相对介电常数的方法.制备了一系列CNT质量分数不同的PDMS薄膜,采用平板电容器原理测量了其相对介电常数,同时...  相似文献   

9.
The negative differential resistance (NDR) effect observed in conducting polymer/Au nanoparticle composite devices is not yet fully clarified due to the random and disordered incorporation of Au nanoparticles into conducting polymers. It remains a formidable challenge to achieve the sequential arrangement of various components in an optimal manner during the fabrication of Au nanoparticle/conducting polymer composite devices. Here, a novel strategy for fabricating Au nanoparticle/conducting polymer composite devices based on self‐assembled Au@PPy core–shell nanoparticle arrays is demonstrated. The interval between the two Au nanoparticles can be precisely programmed by modulating the thickness of the shell and the size of the core. Programmable NDR is achieved by regulating the spacer between two Au nanoparticles. In addition, the Au/conducting polymer composite device exhibits a reproducible memory effect with read–write–erase characteristics. The sequentially controllable assembly of Au@PPy core–shell nanoparticle arrays between two microelectrodes will simplify nanodevice fabrication and will provide a profound impact on the development of new approaches for Au/conducting polymer composite devices.  相似文献   

10.
Polymeric structures with integrated, functional microelectrical mechanical systems (MEMS) elements are increasingly important in various applications such as biomedical systems or wearable smart devices. These applications require highly flexible and elastic polymers with good conductivity, which can be embedded into a matrix that undergoes large deformations. Conductive polydimethylsiloxane (PDMS) is a suitable candidate but is still challenging to fabricate. Conductivity is achieved by filling a nonconductive PDMS matrix with conductive particles. In this work, we present an approach that uses new mixing techniques to fabricate conductive PDMS with different fillers such as carbon black, silver particles, and multiwalled carbon nanotubes. Additionally, the electrical properties of all three composites are examined under continuous mechanical stress. Furthermore, we present a novel, low-cost, simple three-step molding process that transfers a micro patterned silicon master into a polystyrene (PS) polytetrafluoroethylene (PTFE) replica with improved release features. This PS/PTFE mold is used for subsequent structuring of conductive PDMS with high accuracy. The non sticking characteristics enable the fabrication of delicate structures using a very soft PDMS, which is usually hard to release from conventional molds. Moreover, the process can also be applied to polyurethanes and various other material combinations.  相似文献   

11.
Ko H  Tsukruk VV 《Nano letters》2006,6(7):1443-1448
We introduce a simple solution-based method for the fabrication of highly oriented carbon nanotube (CNT) arrays to be used for thin-film transistors. We exploit the liquid-crystalline behavior of a CNT solution near the receding contact line during tilted-drop casting and produced long-range nematic-like ordering of carbon nanotube stripes caused by confined micropatterned geometry. We further demonstrate that the performance of thin-film transistors based on these densely packed and uniformly oriented CNT arrays is largely improved compared to random CNTs. This approach has great potential in low-cost, large-scale processing of high-performance electronic devices based on high-density oriented CNT films with record electrical characteristics such as high conductance, low resistivity, and high career mobility.  相似文献   

12.
Abstract

Polymeric structures with integrated, functional microelectrical mechanical systems (MEMS) elements are increasingly important in various applications such as biomedical systems or wearable smart devices. These applications require highly flexible and elastic polymers with good conductivity, which can be embedded into a matrix that undergoes large deformations. Conductive polydimethylsiloxane (PDMS) is a suitable candidate but is still challenging to fabricate. Conductivity is achieved by filling a nonconductive PDMS matrix with conductive particles. In this work, we present an approach that uses new mixing techniques to fabricate conductive PDMS with different fillers such as carbon black, silver particles, and multiwalled carbon nanotubes. Additionally, the electrical properties of all three composites are examined under continuous mechanical stress. Furthermore, we present a novel, low-cost, simple three-step molding process that transfers a micro patterned silicon master into a polystyrene (PS) polytetrafluoroethylene (PTFE) replica with improved release features. This PS/PTFE mold is used for subsequent structuring of conductive PDMS with high accuracy. The non sticking characteristics enable the fabrication of delicate structures using a very soft PDMS, which is usually hard to release from conventional molds. Moreover, the process can also be applied to polyurethanes and various other material combinations.  相似文献   

13.
Ultrathin film preparations of single-walled carbon nanotube (SWNT) allow economical utilization of nanotube properties in electronics applications. Recent advances have enabled production of micrometer scale SWNT transistors and sensors but scaling these devices down to the nanoscale, and improving the coupling of SWNTs to other nanoscale components, may require techniques that can generate a greater degree of nanoscale geometric order than has thus far been achieved. Here, we introduce linker-induced surface assembly, a new technique that uses small structured DNA linkers to assemble solution dispersed nanotubes into parallel arrays on charged surfaces. Parts of our linkers act as spacers to precisely control the internanotube separation distance down to <3 nm and can serve as scaffolds to position components such as proteins between adjacent parallel nanotubes. The resulting arrays can then be stamped onto other substrates. Our results demonstrate a new paradigm for the self-assembly of anisotropic colloidal nanomaterials into ordered structures and provide a potentially simple, low cost, and scalable route for preparation of exquisitely structured parallel SWNT films with applications in high-performance nanoscale switches, sensors, and meta-materials.  相似文献   

14.
In the recent remarkable advances in soft electronic systems, light-emitting functions play a prominent role. In particular, polymer composite systems with embedded luminescent particles have attracted considerable attention as a luminescent component owing to their flexibility and simple fabrication. However, most flexible composite-based electroluminescent (EL) devices have coplanar structures, requiring mechanically compliant electrodes with high transmittance, durability, and stable electrical conductivity. This is a limitation for systems designed for providing superior flexible characteristics without loss of luminescence. Here, we introduce a novel EL device architecture—a durable/flexible textile-fiber-embedded polydimethylsiloxane and zinc sulfide (PDMS + ZnS) composite, driven by an in-plane electric field, which eliminates the requirement for high transmittance. On applying an AC voltage, light is radially emitted from the ZnS particles surrounding the fibers, originating from the radially distributed electric/optical fields; the rolling and stretching flexibilities are maintained during this process. The device also exhibits strong EL intensities in a thick emitting layer—a parameter on which EL and mechanoluminescent (ML) intensities in coplanar structures are dependent. This is because the electric field is applied between in-plane fibers. Using this smart design, simultaneously high EL and ML intensities can be simply achieved by embedding fibers in strong ML-emitting PDMS + ZnS. We also present a patterned device controlled by different fiber embedding depths, utilizing the vertical and in-plane electric fields. This application may provide a basis for the development of emerging soft display systems that require high luminescence as well as flexibility in the light-emitting components.  相似文献   

15.
Reported herein are the fabrication and demonstration of a flexible and transparent touch sensor using carbon nanotube thin films (CNTFs). The CNTF was fabricated by vacuum filtration and was transferred CNTF to polydimethylsiloxane (PDMS) by water-assisted stamping method. The sheet resistance of the CNTF decreased by approximately 74% after HNO3 treatment. The CNTF touch sensor was fabricated similarly to the conventional four-wire touch screen structures. PDMS was used for the upper plate to absorb the tensile and compressive strain and polyethylene terephthalate (PET) for the lower plate to provide device stability during bending action. The CNTF touch sensor showed high optical transmittance (over 80%) and high sensitivity with the measured touch activation pressure of 23 kPa. Cyclic pressure (38 kPa) was applied at 0.5 Hz and good repeatability was found for several hundred cycles. The results show that the CNTF flexible touch sensor can be applied to future flexible electronic interfaces such as, e-paper and flexible displays.  相似文献   

16.
Cho CJ  O'Leary L  Lewis NS  Greer JR 《Nano letters》2012,12(6):3296-3301
Arrays of vertically aligned Si microwires embedded in polydimethylsiloxane (PDMS) have emerged as a promising candidate for use in solar energy conversion devices. Such structures are lightweight and concurrently demonstrate competitive efficiency and mechanical flexibility. To ensure reliable functioning under bending and flexing, strong interfacial adhesion between the nanowire and the matrix is needed. In situ uniaxial tensile tests of individual, chemically functionalized, Si microwires embedded in a compliant PDMS matrix reveal that chemical functionality on Si microwire surfaces is directly correlated with interfacial adhesion strength. Chemical functionalization can therefore serve as an effective methodology for accessing a wide range of interfacial adhesion between the rigid constituents and the soft polymer matrix; the adhesion can be quantified by measuring the mechanical strength of such systems.  相似文献   

17.
Nanowires are arguably the most studied nanomaterial model to make functional devices and arrays. Although there is remarkable maturity in the chemical synthesis of complex nanowire structures, their integration and interfacing to macro systems with high yields and repeatability still require elaborate aligning, positioning and interfacing and post-synthesis techniques. Top-down fabrication methods for nanowire production, such as lithography and electrospinning, have not enjoyed comparable growth. Here we report a new thermal size-reduction process to produce well-ordered, globally oriented, indefinitely long nanowire and nanotube arrays with different materials. The new technique involves iterative co-drawing of hermetically sealed multimaterials in compatible polymer matrices similar to fibre drawing. Globally oriented, endlessly parallel, axially and radially uniform semiconducting and piezoelectric nanowire and nanotube arrays hundreds of metres long, with nanowire diameters less than 15 nm, are obtained. The resulting nanostructures are sealed inside a flexible substrate, facilitating the handling of and electrical contacting to the nanowires. Inexpensive, high-throughput, multimaterial nanowire arrays pave the way for applications including nanowire-based large-area flexible sensor platforms, phase-changememory, nanostructure-enhanced photovoltaics, semiconductor nanophotonics, dielectric metamaterials,linear and nonlinear photonics and nanowire-enabled high-performance composites.  相似文献   

18.
A technigal with the polydimethylsiloxane (PDMS) solution infiltrated into the SiOx-coated CNTAs has been utilized to directly transfer the CNTAs away from the silicon substrate. The oxide coating layer was utilized to protect the morpholgy of as-grown patterned vertical aligmed carbon nanotube (CNTs) arrays. The high density plasma reactive ions etching (HDP-RIE) system was used to make the CNTs emerge from the surface of the flexible substrate and modify the crystallines of CNTs. After the protecting oxide was HDP-RIE-processed for 8 min, the emission current properties were enhanced to be 1.03 V/microm and 1.43 V/microm, respectively, for the turn-on field and the threshold field, as compared with 1.25 V/microm and 1.59 V/microm for the as-grown CNTs, accordingly. The Field Emission (FE) enhancement after dry etching could be attributed to the open-ended structures and better crystalline.  相似文献   

19.
提出了一种基于压电效应制备柔性电子皮肤的简单方法。为了研究纳米改性对柔性电子皮肤各层性能的影响,首先以纳米SiO2粒子作为改性体,以聚二甲基硅氧烷(PDMS)作为基体,制备出SiO2/PDMS复合柔性衬底,解决了在PDMS上磁控溅射沉积电极材料产生裂纹的现象,成功获得能够稳定工作的柔性电极。然后用钛酸钡/碳纳米管/聚二甲基硅氧烷(BaTiO3/CNTs/PDMS)复合材料作为功能层,制备出一种五层结构的高灵敏性柔性电子皮肤,并找到一种通过改变基板粗糙度的简单方法构建电极与介电层的褶皱接触,进而提升柔性电极的电导率与柔性电子皮肤的压电响应信号。   相似文献   

20.
The advantageous physiochemical properties of poly(dimethylsiloxane) (PDMS) have made it an extremely useful material for prototyping in various technological, scientific, and clinical areas. However, PDMS molding is a manual procedure and requires tedious assembly steps, especially for 3D designs, thereby limiting its access and usability. On the other hand, automated digital manufacturing processes such as stereolithography (SL) enable true 3D design and fabrication. Here the formulation, characterization, and SL application of a 3D‐printable PDMS resin (3DP‐PDMS) based on commercially available PDMS‐methacrylate macromers, a high‐efficiency photoinitiator and a high‐absorbance photosensitizer, is reported. Using a desktop SL‐printer, optically transparent submillimeter structures and microfluidic channels are demonstrated. An optimized blend of PDMS‐methacrylate macromers is also used to SL‐print structures with mechanical properties similar to conventional thermally cured PDMS (Sylgard‐184). Furthermore, it is shown that SL‐printed 3DP‐PDMS substrates can be rendered suitable for mammalian cell culture. The 3DP‐PDMS resin enables assembly‐free, automated, digital manufacturing of PDMS, which should facilitate the prototyping of devices for microfluidics, organ‐on‐chip platforms, soft robotics, flexible electronics, and sensors, among others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号