首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantum dots (Qdots) are nanoparticles exhibiting fluorescent properties that can be used for cell staining. We present here the development of quantum dots conjugated to Annexin V for specific targeting of apoptotic cells, for both apoptosis detection and staining of apoptotic "living" cells. For that purpose, Qdots Streptavidin Conjugates are coupled to biotinylated Annexin V, a 35-kDa protein which specifically recognizes and binds to phosphatidylserine (PS) moieties present on the outer membrane of apoptotic cells and not on healthy or necrotic cells. By using Annexin V, our Qdots probes are made specific for apoptotic cells. Staining of apoptotic cells was checked using fluorescence and confocal microscopy techniques and nonfixed cells. It is shown here that Qdots are insensitive to bleaching after prolonged exposure as opposed to organic dyes. This makes Qdots excellent candidates to continuously follow fast changes occurring at the membrane of apoptotic cells and facilitates time-lapse imaging as they alleviate any bleaching issue.  相似文献   

2.
Carbon nanoparticles are a promising material which finds application in different fields in industry and medicine. For medical applications, biocompatibility of nanoparticles is of critical importance because a lot of medical implants are coated by carbon coating. Our previous results showed that nanoparticles may induce increased production of ROS by the cells so we decided to checked if nanopowders can induce apoptosis. Apoptosis was quantified by double-staining with acridine orange and ethidium bromide. For comparison, we identified apoptotic cells with annexin V-FITC/propidium iodide. Our data demonstrate that treatment of the cells with diamond nanopowders may induce apoptosis and necrosis and this effect is dependent on the time of treatment and concentration of the nanopowders. The highest level of apoptotic cells was observed after incubation with Ultrananocrystalline Detonation Diamond (UDD) suggesting that the size is the main determinant of nanoparticle cytotoxicity.  相似文献   

3.
Recent epidemiologic researches indicate that exposure to ultrafine particles (nanoparticles) is an independent risk factor for several cardiovascular diseases. The induction of endothelial injuries is hypothesized to be an attractive mechanism involved in these cardiovascular diseases. To investigate this hypothesis, the widely used iron nanomaterials, ferric oxide (Fe2O3) and ferriferrous oxide (Fe3O4) nanoparticles were incubated with human umbilical endothelial cells (ECV304 cells) at different concentrations of 2, 20, 100 microg/mL. The cell viability, the rate of apoptosis, the apoptotic nuclear morphology and the mitochondria membrane potential were measured to estimate the cell necrosis and apoptosis caused by the nanoparticle exposure. The stimulation of superoxide anion (O2*-) and nitric oxide (NO) were examined to evaluate the stress responses of endothelial cells. Our results indicated that both the Fe2O3 and Fe3O4 nanoparticles could generate oxidative stress as well as the significant increase of nitric oxide in ECV304 cells. The loss of mitochondria membrane potential and the apoptotic chromatin condensation in the nucleus were observed as the early signs of apoptosis. It is inferred the stress response might be an important mechanism involving in endothelial cells apoptosis and death, and these injuries in endothelial cells might play a key role in downstream cardiovascular diseases such as atheroscelerosis, hypertension and myocardial infarction (MI).  相似文献   

4.
The ability for early evaluation of therapeutic effects is a significant challenge in leukemia research. To address this challenge, we developed a novel electrochemical platform for ultrasensitive and selective detection of apoptotic cells in response to therapy. In order to construct the platform, a novel three-dimensional (3-D) architecture was initially fabricated after combining nitrogen-doped carbon nanotubes and gold nanoparticles via a layer-by-layer method. The formed architecture provided an effective matrix for annexin V with high stability and bioactivity to enhance sensitivity. On the basis of the specific recognition between annexin V and phosphatidylserine on the apoptotic cell membrane, the annexin V/3-D architecture interface showed a predominant capability for apoptotic cell capture. Moreover, a lectin-based nanoprobe was designed by noncovalent assembly of concanavalin A on CdTe quantum dots (QDs)-labeled silica nanospheres with poly(allylamine hydrochloride) as a linker. This nanoprobe incorporated both the specific carbohydrate recognition and the multilabeled QDs-based signal amplification. By coupling with the QDs-based nanoprobe and electrochemical stripping analysis, the proposed sandwich-type cytosensor showed an excellent analytical performance for the ultrasensitive detection of apoptotic cells (as low as 48 cells), revealing great potential toward the early evaluation of therapeutic effects.  相似文献   

5.
The interaction of citrate- and polyethylene imine (PEI)-functionalised gold nanoparticles (GNP) with cancer cell lines with respect to the cellular response was studied. It was found that GNP/citrate nanoparticles were able to induce apoptosis in human carcinoma lung cell lines A549, but GNP/PEI did not show any reduction in the viability of the cells in human breast cancer cell line MCF-7 and A549 cell lines. FACS data confirmed that the number of apoptotic cells increased with increase in the concentration of GNP/citrate nanoparticles. Decline in cellular expansion and changes in the nuclear morphology were noted after the treatment of GNP/citrate nanoparticles on A549 cell lines, which itself is a direct response for stress induction. The induction of cellular apoptosis was further confirmed by DNA fragmentation assay. These data confirm the potential of GNP/citrate nanoparticle to evoke cell-specific death response in the A549 cell lines.  相似文献   

6.
Wu Y  Zhou H  Wei W  Hua X  Wang L  Zhou Z  Liu S 《Analytical chemistry》2012,84(4):1894-1899
Apoptosis is involved in the pathology of a variety of diseases. The measurement of apoptosis will help us to evaluate the onset of disease and the effect of therapeutic interventions. In addition, the increased demand for understanding the early stages of apoptosis is pushing the envelope for solutions in early instance real-time monitoring of death kinetics. Here we present a novel electrochemiluminescent cytosensing strategy to quantitate apoptotic cell numbers, screen some anticancer drugs, and evaluate their effects on hepatocarcinoma cell line (HepG2) cells by utilizing the human antiphosphatidyl serine antibody (APSA) conjugated Ru(bpy)(3)(2+)-encapsulated silica nanoparticle (APSA-SiO(2)@Ru) as the detection probe. HepG2 cells were easily immobilized on the arginine-glycine-aspartic acid-serine (RGDS)-multiwalled carbon nanotubes (RGDS-MWCNTs) nanocomposite by the specific combination of RGD domains with integrin receptors on the cell surface. Then APSA-SiO(2)@Ru was introduced to the surface of apoptosis cells through the specific interaction between APSA and phosphatidylserine (PS) that distributed on the outer membrane of apoptotic cells. On the basis of the signal amplification of the APSA-SiO(2)@Ru nanoprobe, the cytosensor could respond as low as 800 cells mL(-1), showing very high sensitivity. In addition, the dynamic alterations of surface PS expression on HepG2 cells in response to drugs and the cell heterogeneity were also demonstrated. The strategy presented a promising platform for highly sensitive cytosensing and convenient screening of some clinically available anticancer drugs.  相似文献   

7.
The influence of the surface chemistry of silver nanoparticles (AgNPs) on p53 mediated cell death was evaluated using human dermal fibroblast (HDF) and lung cancer (A549) cells. The citrate reduced AgNPs (C-AgNPs) were modified with either lactose (L-AgNPs) or a 12-base long oligonucleotide (O-AgNPs). Both unmodified and modified AgNPs showed increased concentration and time dependent cytotoxicity and genotoxicity causing an increased p53 up-regulation within 6 h and led to apoptotic or necrotic cell deaths. The C-AgNPs induced more cytotoxicity and cellular DNA damage than the surface modified AgNPs. Modifying the C-AgNPs with lactose or the oligonucleotide reduced both necrotic and apoptotic cell deaths in the HDF cells. The C-AgNPs caused an insignificant necrosis in A549 cells whereas the modified AgNPs caused necrosis and apoptosis in both cell types. Compared to the O-AgNPs, the L-AgNPs triggered more cellular DNA damage, which led to up-regulation of p53 gene inducing apoptosis in A549 cells compared to HDF cells. This suggests that the different surface chemistries of the AgNPs cause different cellular responses that may be important not only for their use in medicine but also for reducing their toxicity.  相似文献   

8.
Currently, nanotechnology and nanoparticles (NPs) are recognised due to their extensive applications in medicine and the treatment of certain diseases, including cancer. Silver NPs (AgNPs) synthesised by environmentally friendly method exhibit a high medical potential. This study was conducted to determine the cytotoxic and apoptotic effects of AgNPs synthesised from sumac (Anacardiaceae family) fruit aqueous extract (AgSu/NPs) on human breast cancer cells (MCF‐7). The anti‐proliferative effect of AgSu/NPs was determined by MTT assay. The apoptotic properties of AgSu/NPs were assessed by morphological analysis and acridine orange/propidium iodide (AO/PI) and DAPI staining. The mechanism of apoptosis induction in treated cells was investigated using molecular analysis. Overall results of morphological examination and cytotoxic assay revealed that AgSu/NPs exert a concentration‐dependent inhibitory effect on the viability of MCF‐7 cells (IC50 of ∼10 µmol/48 h). AO/PI staining confirmed the occurrence of apoptosis in cells treated with AgSu/NPs. In addition, molecular analysis demonstrated that the apoptosis in MCF‐7 cells exposed to AgSu/NPs was induced via up‐regulation of Bax and down‐regulation of Bcl‐2. These findings suggested the potential use of AgSu/NP as cytotoxic and pro‐apoptotic efficacy and its possible application in modern medicine for treating certain disorders, such as cancer.Inspec keywords: nanoparticles, silver, nanomedicine, biomedical materials, toxicology, cancer, molecular biophysics, proteins, biochemistry, cellular biophysics, nanofabricationOther keywords: Ag, Bcl‐2 down‐regulation, Bax up‐regulation, MCF‐7 cell viability, concentration‐dependent inhibitory effect, cytotoxic assay, molecular analysis, DAPI staining, acridine orange‐propidium iodide staining, morphological analysis, MTT assay, human breast cancer cells, sumac fruit aqueous extract, Anacardiaceae family, cytotoxic effects, drug delivery function, diseases, Rhus coriaria L, silver nanoparticles, antiproliferative potential, apoptotic efficacy  相似文献   

9.
10.
Cancer treatment with several kinds of drugs, especially targets the apoptotic pathways nowadays. TNF‐related apoptosis‐inducing ligand (TRAIL) as one of the important members of death receptors, significantly trigger induction of apoptosis in cancer cells. Three conserved domains of Death receptor (DR5) protein extracellular domain, which are fortified cysteine, were chosen and chemically synthesised. Hens were immunised with nano‐liposomal peptides, and as a result the purified Immunoglobulin (IgYs) remarkably killed the cancerous MCF7 cells. The flow cytometric assay, confirmed the apoptotic death. Among several kinds of carriers that were used in this research, the nano‐liposomal and nanoparticle conjugated, both were acceptable choices for drug delivery. Furthermore, the IgY against DR5''s small peptides with such carriers successfully reached the target and significantly killed the cancer cells via apoptosis.Inspec keywords: proteins, cancer, cellular biophysics, nanoparticles, nanomedicine, drug delivery systems, molecular biophysics, purification, biochemistryOther keywords: nanoparticle, cancer cells, cancer treatment, apoptotic pathways, DR5 protein extracellular domain, fortified cysteine, nanoliposomal peptides, purified IgY, cancerous MCF7 cells, flow cytometric assay, apoptotic death, drug delivery  相似文献   

11.
We report the development of a chitosan nanocarrier (NC)-based delivery of silver nanoparticles (Ag NPs) to mammalian cells for induction of apoptosis at very low concentrations of the NPs. The cytotoxic efficacy of the Ag NP-nanocarrier (Ag-CS NC) system in human colon cancer cells (HT 29) was examined by morphological analyses and biochemical assays. Cell viability assay demonstrated that the concentration of Ag NPs required to reduce the viability of HT 29 cells by 50% was 0.33 μg mL(-1), much less than in previously reported data. The efficient induction of apoptosis by Ag-CS NCs was confirmed by flow cytometry. Additionally, the characteristic nuclear and morphological changes during apoptotic cell death were investigated by fluorescence and scanning electron microscopy (SEM), respectively. The involvement of mitochondrial pathway of cell death in the Ag-CS NCs induced apoptosis was evident from the depolarization of mitochondrial membrane potential (ΔΨ(m)). Real time quantitative RT-PCR analysis demonstrated the up-regulation of caspase 3 expression which was further reflected in the formation of oligo-nucleosomal DNA "ladders" in Ag-CS NCs treated cells, indicating the important role of caspases in the present apoptotic process. The increased production of intracellular ROS due to Ag-CS NCs treatment indicated that the oxidative stress could augment the induction of apoptosis in HT 29 cells in addition to classical caspase signaling pathway. The use of significantly low concentration of Ag NPs impregnated in chitosan nanocarrier is a much superior approach in comparison to the use of free Ag NPs in cancer therapy.  相似文献   

12.
A 110 kDa (ca. 5 nm in diameter) bivalent paramagnetic nanoprobe for detecting cell death using magnetic resonance imaging (MRI) is described, in which two biotinylated C2A domains of the protein synaptotagmin-I were complexed with a single avidin molecule, which had been labeled with gadolinium chelates. This nanoprobe bound with high affinity and specificity to the phosphatidylserine exposed by dying cells and was demonstrated to allow MRI detection of apoptotic tumor cells in vitro.  相似文献   

13.
An investigation has been made into the antitumor effect on K562 cells of orpiment nanoparticles which were prepared chemically and analyzed by transmission electron microscope and energy dispersive spectrometry (EDS). Methyl thiazolyl tetrazolium and flow cytometry assays were performed to examine their antitumor effect compared with that of traditional orpiment at various concentrations. The average diameters of the two types of orpiment nanoparticles prepared were 60 nm and 140 nm, respectively, and EDS identified that only orpiment was present. Orpiment nanoparticles greatly inhibited the proliferation of K562 cells by apoptosis, in a concentration-and time-dependent manner, much more effectively than traditional orpiment (p < 0.001). The survival ratio of cells treated with orpiment nanoparticles at 2, 4, 8, and 16 micromol/l after 72 h was 23.0%, 10.1%, 3.2%, and 0.5%, respectively, much lower than 80.0%, 69.0%, 52.3%, and 31.7% of cells treated with traditional orpiment at the corresponding concentration for 72 h. The IC50 of orpiment nanoparticles in K562 cells for 48 h was only 1.27 micromol/l, in comparison with 13.0 micromol/l of traditional orpiment. After treated with orpiment nanoparticles at 4, 8, and 16 micromol/l for 48 h, the apoptotic rate of cells was 11.55%, 20.70%, and 26.45%, respectively, but that in cells treated with traditional orpiment at the same concentration for 48 h was only 3.16%, 3.86%, and 6.46%, respectively. Thus, orpiment nanoparticles can produce a much better cytotoxic effect on cancer cells than that of traditional orpiment.  相似文献   

14.
An in vitro study was conducted to determine the apoptosis induced by tamoxifen (TAM) and TAM-loaded solid lipid nanoparticles (SLNs) in breast cancer cell lines, MCF-7 and MDA-MB231 cells. The effect of free drug and drug-loaded SLN on the cell lines was characterised by cell morphology and cell cycle distribution using phase contrast microscopy, nuclear morphology and flow cytometry, respectively. The results showed that TAM-loaded SLNs have an equally efficient cytotoxic activity against MCF-7 and MDA-MB231 cells, compared to free TAM, and the half maximal inhibitory concentration (IC50) of TAM-loaded SLNs was generally lower than that of free TAM. In the presence of TAM and TAM-loaded SLN, the viability of the both cells diminishes and the cancer cells lose their normal morphological characteristics, detaches, aggregates and later develops apoptotic bodies. Flow cytometry analysis showed that TAM-loaded SLN like the free TAM caused a dose- and time-dependent apoptosis without cell cycle arrest of human breast cancer cells. Therefore, TAM-loaded SLN has great potential in human medicine for the treatment of breast cancers.  相似文献   

15.
Inhibition of apoptosis in tumour cells may depend on intracellular reduced glutathione (GSH) level. In this work, GSH levels were studied by (1)H MRS in MCF-7 and HeLa cells, characterised by a different radiosensitivity. Annexin-V test showed that the fraction of apoptotic HeLa cells after irradiation is much higher than in control, although MCF-7 cells did not show a significant apoptosis. MRS signals from GSH (G) show lower intensity in HeLa with respect to MCF-7 cells; the opposite is true for free glutamic acid [glu (g)]. After irradiation, the G/g ratio decreases in MCF-7, although remaining approximately constant in HeLa cells. Buthionine sulfoximine (BSO) treated MCF-7 cells show an increase in the percentage of apoptotic cells; in parallel, G/g ratio behaves as in HeLa. This study indicates that GSH level may act as predictive marker of apoptosis by irradiation.  相似文献   

16.
Gold nanoparticles (AuNPs) are considered beneficial in the field of biomedicine and in the development of therapeutic nanomedicine products. In the present study, Vitis vinifera. L (grapes) peel polyphenols were utilized as reducing and stabilizing agents for the biosynthesis of gold nanoparticles, and their cytotoxicity and apoptotic effects were assessed. The synthesized gold nanoparticles were characterized using UV-Visible spectroscopy, Transmission electron microscopy (TEM), X-ray diffraction (XRD), Particle size distribution, Fourier transform infrared spectroscopy (FTIR) and zeta potential analysis. TEM analysis confirmed that the nanoparticles were spherical with ~20–40 nm in size. Particle size distribution revealed ~50 ± 5 nm nanoparticles and FTIR confirmed the presence of polyphenols capped onto the peel gold nanoparticles. The V. vinifera peel gold nanoparticles were studied for their antiproliferative activities and induction of apoptosis at the inhibitory concentration (IC50) of 23.6 µM. A431 cell lines incubated with V. vinifera peel gold nanoparticles for 24 h exhibited cytotoxicity activity mediated by increased reactive oxygen species (ROS) production, apoptotic morphological changes and loss of membrane potential significantly (p < 0.01). Thus, the cytotoxicity of the gold nanoparticles could be attributed to the synergistic effects of the phenolic moieties of the V. vinifera peels and the efficiency of the bioconjugated gold nanoparticles causing apoptosis and secondary necrosis.  相似文献   

17.
Fibroblasts proliferation and apoptosis as well as tissue response after implantation of elastomers containing nanocrystalline TiO2 were investigated in the present in vitro and in vivo study. Materials investigated were soft poly(aliphatic/aromatic‐ester) multiblock thermoplastic elastomers with poly(ethylene terephthalate) (PET) hard segments and dimerized linoleic acid (DLA) soft segments, respectively, containing 0.2 wt% TiO2 nanoparticles. An investigation of the influence of TiO2 nanoparticles incorporated into polymeric material on in vitro biocompatibility revealed enhanced cell proliferation and diminished number of necrotic and apoptotic cells as compared to nanoparticles‐free polymer. Implantation tests indicated that the observed tissue changes were similar to those observed with medical‐grade silicone elastomer, no evidence of contact necrosis being observed. The unchanged morphology of rat liver hepatocytes and the lack of parenchymal necrosis also indicated that exposure to the material containing TiO2 nanoparticles, did not cause any cytotoxic reactions. The present study, thus, showed that elastomeric polyester containing TiO2 nanoparticles are interesting biomimetic constructs for improved tissue regeneration.  相似文献   

18.
Programmed cell death, or apoptosis, plays a central role in animal development and tissue homeostasis. Since its discovery interest increases in the biological as well as in medical aspects of this genetic program. On the one hand, missing or low induction of apoptosis is connected to an increased cancer risk, on the other hand, an excessive occurrence of cell death results in serious consequences for the whole organism. An early death of immune competent cells may weaken the immune defense. Additionally, the acceptance of transplanted organs or synthetic prostheses is decreased when surrounding tissues are induced to undergo apoptosis. Particularly metallic ingredients or impurities in alloys or plastic materials may interfere with cellular signal transduction pathways that induce apoptosis leading to detrimental effects. The review summarises recent publications on apoptosis induced by metals and metal compounds with the aim of providing a better understanding of the connection between the apoptotic machinery and the toxic effects of metals in medicine.  相似文献   

19.
This minireview outlines the synthetic efforts, from our research group, to produce nanomaterials for use as imaging agents to study cell signaling pathways. An overview of our approach to the synthesis and biofunctionalization of metal, semiconductor, and ceramic nanomaterials is presented. The probes investigated include coinage metals, Cd-based, Gedeg, naturally occurring fluorescent (NOF) minerals, and Ln-based nanoparticles which were synthesized from novel metal alkoxide, amide, and alkyl precursors. We illustrate the applications of some of these materials as imaging probes to detect signaling pathway components and cellular responses to signals (apoptosis and degranulation) in inflammatory and cancer cells  相似文献   

20.
Super‐paramagnetic iron oxide nanoparticles (SPIONs) are recognized as powerful biocompatible materials for use in various biomedical applications, such as drug delivery, magnetic‐resonance imaging, cell/protein separation, hyperthermia and transfection. This study investigates the impact of high concentrations of SPIONs on cytotoxicity and cell‐cycle effects. The interactions of surface‐saturated (via interactions with cell medium) bare SPIONs and those coated with poly(vinyl alcohol) (PVA) with adhesive mouse fibroblast cells (L929) are investigated using an MTT assay. The two SPION formulations are synthesized using a co‐precipitation method. The bare and coated magnetic nanoparticles with passivated surfaces both result in changes in cell morphology, possibly due to clustering through their magnetostatic effect. At concentrations ranging up to 80 × 10?3 M , cells exposed to the PVA‐coated nanoparticles demonstrate high cell viability without necrosis and apoptosis. In contrast, significant apoptosis is observed in cells exposed to bare SPIONs at a concentration of 80 × 10?3 M . Nanoparticle exposure (20–80 × 10?3 M ) leads to variations in both apoptosis and cell cycle, possibly due to irreversible DNA damage and repair of oxidative DNA lesions, respectively. Additionally, the formation of vacuoles within the cells and granular cells indicates autophagy cell death rather than either apoptosis or necrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号