首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
This article is a condensed overview of a dimethyl ether (DME) fuel application for a compression ignition diesel engine. In this review article, the spray, atomization, combustion and exhaust emissions characteristics from a DME-fueled engine are described, as well as the fundamental fuel properties including the vapor pressure, kinematic viscosity, cetane number, and the bulk modulus. DME fuel exists as gas phase at atmospheric state and it must be pressurized to supply the liquid DME to fuel injection system. In addition, DME-fueled engine needs the modification of fuel supply and injection system because the low viscosity of DME caused the leakage. Different fuel properties such as low density, viscosity and higher vapor pressure compared to diesel fuel induced the shorter spray tip penetration, wider cone angle, and smaller droplet size than diesel fuel. The ignition of DME fuel in combustion chamber starts in advance compared to diesel or biodiesel fueled compression ignition engine due to higher cetane number than diesel and biodiesel fuels. In addition, DME combustion is soot-free since it has no carbon–carbon bonds, and has lower HC and CO emissions than that of diesel combustion. The NOx emission from DME-fueled combustion can be reduced by the application of EGR (exhaust gas recirculation). This article also describes various technologies to reduce NOx emission from DME-fueled engines, such as the multiple injection strategy and premixed combustion. Finally, the development trends of DME-fueled vehicle are described with various experimental results and discussion for fuel properties, spray atomization characteristics, combustion performance, and exhaust emissions characteristics of DME fuel.  相似文献   

2.
在一台电控共轨发动机上,试验研究了乙醇掺混比例和喷射定时对二甲醚-乙醇混合燃料燃烧及排放的影响。结果表明:随乙醇比例的增加,滞燃期延长,燃烧持续期缩短,最大压力升高率上升。随喷射推迟,滞燃期延长,燃烧相位延后,燃烧持续期在纯二甲醚时延长,而在掺混乙醇时则先延长后缩短,最大压力升高率先下降后上升。掺混乙醇和推迟喷射使预混燃烧比例增加。随喷射推迟,混合燃料的排气温度升高,喷射推迟到上止点后,排气温度随乙醇比例的增加而升高,排气温度高,则废气能量高,增压器增压比大,进气流量大,导致缸内压缩压力升高。在上止点前喷射时,掺混乙醇能使HC和CO排放保持在较低范围的同时,一定程度降低NO_x排放,掺混15%的乙醇较纯二甲醚最大降低约11%NO_x排放。随推迟喷射,NO_x排放降低,最大降幅达52%,在过分推迟燃料喷射时,因热效率低,循环喷射量增加,含15%乙醇混合燃料的NO_x排放会高于纯二甲醚。HC和CO排放随喷射推迟而升高,且升高幅度增大。  相似文献   

3.
分别以柴油的十六烷值、十六烷值和十六烷改进剂、十六烷值和柴油的含氮量作为输入量,以发动机排放的NOx作为输出量,建立了发动机的NOx排放的线性神经网络模型,利用该模型预测了发动机排放的NOx的值,分析了十六烷改进剂和柴油的含氮量对发动机的NOx排放的影响,得到了较为满意的结果。  相似文献   

4.
The present work aims to investigate the consequences of pilot fuel (PF) multiple injections and hydrogen manifold injection (HMI) on the combustion and tailpipe gas characteristics of a common rail direct injection (CRDI) compression ignition (CI) engine operated on dual fuel (DF) mode. The CI engine can perform on a wide variety of fuels and under high pilot fuel (PF) pressure. Pilot fuel injection (PFI) is achieved at TDC, 5, 10, and 15ºCA before the top dead center (bTDC), and divided injection consists of injecting fuel in three different magnitudes on a time basis and PF is injected into the engine cylinder at a pressure of 600 bar. In this work, the hydrogen flow rate (HFR) was fixed at 8 lpm constant and producer gas was inducted without any restriction. The investigational engine setup has the ability to deliver a PF and hydrogen (H2) precisely in all operating circumstances using a separate electronic control unit (ECU). Results showed that diesel-hydrogen enriched producer gas (HPG) operation at maximum operating conditions provided amplified thermal efficiency by 4.01% with reduced emissions, except NOx levels, compared to biodiesel-HPG operation. Further, DiSOME with the multi-injection strategy of 60 + 20+20 and 50 + 25+25, lowered thermal efficiency by 4.8% and 9.12%, respectively compared to identical fuel combinations under a single injection scheme. However, reductions in NOx levels, cylinder pressure, and HRR were observed with a multi-injection scheme. It is concluded that multi-injection results in lower BTE, changes carbon-based emissions marginally, and decreases cylinder pressure and heat release rate than the traditional fuel injection method.  相似文献   

5.
This paper presents the results of experimental work carried out to evaluate the combustion performance and exhaust emission characteristics of turpentine oil fuel (TPOF) blended with conventional diesel fuel (DF) fueled in a diesel engine. Turpentine oil derived from pyrolysis mechanism or resin obtained from pine tree dissolved in a volatile liquid can be used as a bio-fuel due to its properties. The test engine was fully instrumented to provide all the required measurements for determination of the needed combustion, performance and exhaust emission variables. The physical and chemical properties of the test fuels were earlier determined in accordance to the ASTM standards.ResultsIndicated that the engine operating on turpentine oil fuel at manufacture's injection pressure – time setting (20.5 MPa and 23° BTDC) had lower carbon monoxide (CO), unburned hydrocarbons (HC), oxides of nitrogen (NOx), smoke level and particulate matter. Further the results showed that the addition of 30% TPOF with DF produced higher brake power and net heat release rate with a net reduction in exhaust emissions such as CO, HC, NOx, smoke and particulate matter. Above 30% TPOF blends, such as 40% and 50% TPOF blends, developed lower brake power and net heat release rate were noted due to the fuels lower calorific value; nevertheless, reduced emissions were still noted.  相似文献   

6.
In this study, hybrid fuels consisting of rapeseed oil/diesel blend, 1% aqueous ethanol and a surfactant (oleic acid/1-butanol mixture) were prepared and tested as a fuel in a direct injection (DI) diesel engine. The main fuel properties such as the density, viscosity and lower heating value (LHV) of these fuels were measured, and the engine performance, combustion and exhaust emissions were investigated and compared with that of diesel fuel. The experimental results showed that the viscosity and density of the hybrid fuels were decreased and close to that of diesel fuel with the increase of ethanol volume fraction up to 30%. The start of combustion was later than that of diesel fuel and the peak cylinder pressure, peak pressure rise rate and peak heat release rate were higher than those of diesel fuel. The brake specific fuel consumption (BSFC) of hybrid fuels was increased with the volume fraction of ethanol and higher than that of diesel. The brake specific energy consumption (BSEC) was almost identical for all test fuels. The smoke emissions were lower than those for diesel fuel at high engine loads, the NOx emissions were almost similar to those of diesel fuel, but CO and HC emissions were higher, especially at low engine loads.  相似文献   

7.
With the increasing number of light-duty passenger car, a large amount of waste engine oil was produced yearly which has polluted the environment and wasted fossil resources. Extend engine oil drain interval and reduce its effect on engine emission is of great importance. In this paper, a kind of modified-sawdust engine oil filter was developed and the study focus on its effect on the emission characteristics and fuel consumption rate of spark ignite gasoline engine. This modified-sawdust engine oil filter was also compared with common oil filter. The tests were performed in four-cylinder direct injection gasoline engine at six different typical operating conditions. Various tests were proceed including the exhaust emissions measurement of nitrogen oxides (NOx), carbon monoxide (CO) and hydrocarbons (HC) as well as the fuel consumption rate measurement. The effect of engine oil change on engine emission and fuel consumption rate were also studied. Impurity element content of waste oil and kinetic viscosity were measured before and after modified oil filter was used. The results show that relative to common oil filter, the modified-sawdust oil filter has 0.4–2.1%, 3.7–7.5%, 1.6–13.3% decrease for CO, HC, NOx emissions, respectively. In addition, it significantly reduces oil consumption, and the three major emission species (CO, HC and NOx) was also reduced when fresh engine oil was adopted. These results indicate that the use of modified-sawdust oil filter is an effective choice to improve gasoline engine emission and fuel economy.  相似文献   

8.
This study investigated the engine performance and emissions of a supercharged engine fueled by hydrogen (H2), and three other hydrogen-containing gaseous fuels such as primary fuels, and diesel as pilot fuel in dual-fuel mode. The energy share of primary fuels was about 90% or more, and the rest of the energy was supplied by diesel fuel. The hydrogen-containing fuels tested in this study were 13.7% H2-content producer gas, 20% H2-content producer gas and 56.8% H2-content coke oven gas (COG). Experiments were carried out at a constant pilot injection pressure and pilot quantity for different fuel-air equivalence ratios and at various injection timings. The experimental strategy was to optimize the pilot injection timing to maximize engine power at different fuel-air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. Better thermal efficiency was obtained with the increase in H2 content in the fuels, and neat H2 as a primary fuel produced the highest thermal efficiency. The fuel-air equivalence ratio was decreased with the increase in H2 content in the fuels to avoid knocking. Thus, neat H2-operation produced less maximum power than other fuels, because of much leaner operations. Two-stage combustion was obtained; this is an indicator of maximum power output conditions and a precursor of knocking combustion. The emissions of CO and HC with neat H2-operation were 98-99.9% and NOx about 85-90% less than other fuels.  相似文献   

9.
Hydrogen-diesel dual fuel (HDDF) technology is one approach available to improve the performance and reduce carbon-based emissions of compression ignition (CI) engines. Unfortunately, when operated at partial and low loads, HDDF engine configurations suffer from poor fuel utilization, combustion efficiency and ignition delay. As partial load application is increasingly important to performance of hybrid power systems, this paper explores the use of oxygen enrichment to improve HDDF performance outside of conventional load applications.In this paper, a numerical model was first developed and validated for HDDF combustion using experimental data. This model was subsequently applied to study the influences of oxygen enrichment on engine performance and emission characteristics. Furthermore, the Exhaust Gas Recirculation (EGR) was implemented as a secondary control for NOx emission reduction. For this configuration the results showed that oxygen enrichment (between 21% and 27% by volume) into the intake manifold led to an improved combustion efficiency and reduced carbon-based emissions. The brake thermal efficiency (BTE) increased by 1.6% and the brake specific energy consumption decreased by 4%. Across the emissions spectrum, soot emission reduced by 72%, whereas NOx emission increased by 63% without using the EGR technique. By combining oxygen enrichment and EGR strategies, a considerable reduction of 79% in NOx and an increase of 2.6% in BTE was observed for the oxygen concentration of 27% and EGR rate of 24% compared to a conventional HDDF operation with 45% HES ratio.  相似文献   

10.
Hydrogen generated from renewable sources is an eco-friendly fuel that can be used in automotive industry or for energy generation purposes. Hydrogen is a high-energy content gas and its carbonless chemical structure can provide significant benefits of high thermal efficiency and near zero or very low carbon emissions when combusted with other fuels.In this study, the implementation of hydrogen fuel was tested at low and medium operating loads in a heavy-duty hydrogen-diesel dual-fuel engine. The paper provides a detailed experimental analysis of the effects of hydrogen energy share ratio and various combustion strategies such as exhaust gas recirculation, diesel injection pressure and diesel injection patterns.At low load conditions, engine operation with an H2 energy share ratio of up to 98% was achieved without any engine operation implications. This condition provided a simultaneous reduction of carbon and NOx emission of over 90% while soot emissions were dropped by 85% compared to the conventional diesel-only operation. At medium load, the increased NOx emission due to the high energy content of hydrogen fuel was found to be the primary challenge.  相似文献   

11.
The present study investigated the effect of compression ratio (CR) with the use of exhaust gas recirculation (EGR) technology on the performance of combustion characteristics at different CRs and engine loads; the brake thermal efficiency (BTE), specific fuel consumption (SFC), volumetric efficiency (VOL.EFF), exhaust gas temperature, carbon dioxide emission (CO2), hydrocarbons (HC), nitrogen oxides (NOx), and oxygen content (O2). The single-cylinder, four-stroke compression ignition engine was run on a mixture of diesel and biodiesel prepared from Iraqi waste cooking oil at (B0, B10, B20, and B30). A comparison has been achieved for these combustion characteristics at different blends, load, and CRs (14.5, 15.5, and 16.5) at 1500 rpm constant engine speed. The transesterification process is used to produce biodiesel and ASTM standards have been used to determine the physical and chemical properties of biodiesel and compare them to net diesel fuel. The preliminary conducting tests indicated that engine performance and emissions improved with the B20 mixture. Experimental test results showed an increase in BTE when CR increased by 17% and SFC increased by 23%. It also found a higher VOL.EFF by 6% at higher pressure ratios. A continuous decrease in BTE values and an increase in SFC were sustained when the percentage of biodiesel in the mixture was increased. Emissions of carbon dioxide, HC, and NOx increased by 12%, 50%, and 40%, respectively, as CR reached high values. NOx increased with the addition of biodiesel to 35%, which necessitated the use of EGR technology at rates of 5% and 10%. The results indicated that the best results were obtained in the case of running the engine with a mixing ratio of B20 with the addition of 10% EGR, NOx decreased by 47% against a slight increase in other emissions.  相似文献   

12.
通过台架试验,分析对比柴油机各参数随预喷正时的变化,研究多次喷射预喷正时对柴油机燃烧和排放性能的影响。试验表明,预喷正时决定缸内燃烧的放热始点和放热率,影响缸内的燃烧温度、爆发压力、NOx排放和碳烟的生成,预喷正时为20°时,爆发压力最大;预喷正时为35°时,热效率最高,油耗率和烟度最低;预喷正时为45°时,NOx排放最小。综合分析选择预喷正时40°作为折中优化方案,降低发动机油耗和NOx、碳烟排放,同时提高发动机的热效率。  相似文献   

13.
In the present work, a normal diesel engine was modified to work in a dual fuel (DF) mode with turpentine and diesel as primary and pilot fuels, respectively. The resulting homogeneous mixture was compressed to a temperature below the self‐ignition point. The pilot fuel was injected through the standard injection system and initiated the combustion in the primary‐fuel air mixture. The primary fuel (turpentine) has supplied most of the heat energy. Usually, in all DF engines, low‐cetane fuels are preferred as a primary fuel. Therefore, at higher loads these fuels start knocking and deteriorating in performances. Usually, DF operators suppress the knock by adding more pilot‐fuel quantity. But in the present work, a minimum pilot‐fuel quantity was maintained constant throughout the test and a required quantity of diluent (water) was added into the combustion at the time of knocking. The advantages of this method of knock suppression are restoration of performance at full load, maintenance of the same pilot quantity through the load range and reduction in the fuel consumption at full load. From the results, it was found that all performance and emission parameters of turpentine, except volumetric efficiency, are better than those of diesel fuel. The emissions like CO, UBHC are higher than those of the diesel baseline (DBL) and around 40–45% reduction of smoke was observed at 100% of full load. The major pollutant of diesel engine, NOx, was found to be equal to that of DBL. From the above experiment, it was proved that approximately 80% replacement of diesel with turpentine is quite possible. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Renewable fuels produced from vegetable oils are an attractive alternative to fossil-based fuel. Different type of fuels can be derived from these triglycerides. One of them is biodiesel which is a mono alkyl ester of the vegetable oil. The biodiesel is produced by transesterification of the oil with an alcohol in the presence of a catalyst. Another kind of fuel (which is similar to petroleum-derived diesel) can be produced from the vegetable oil using hydroprocessing technique. This method uses elevated temperature and pressure along with a catalyst to produce a fuel termed as ‘renewable diesel’. The fuel produced has properties that are beneficial for the engine as well as the environment. It has high cetane number, low density, excellent cold flow properties and same materials can be used as are used for engine running on petrodiesel. It can effectively reduce NOx, PM, HC, CO emissions and unregulated emissions as well as greenhouse gases as compared to diesel. The fuel is also beneficial for the after-treatment systems. Trials in the field have shown that the volumetric fuel consumption of renewable diesel is higher than petrodiesel and nearly proportional to the volumetric heating value. The present review focuses on the hydroprocessing technique used for the renewable diesel production and the effect of different parameters such as catalyst, reaction temperature, hydrogen pressure, liquid hourly space velocity (LHSV) and H2/oil ratio on oil conversion, diesel selectivity, and isomerization. The review also summarizes the effect; renewable diesel has on combustion, performance, and emission characteristics of a compression ignition engine.  相似文献   

15.
Shortage of non-renewable energies, increase in fossil fuel prices and stricter emissions regulations due to high NOx and soot emissions emitted from combustion of heavy diesel fuels by compression ignition engines, has led consumers to use renewable, cleaner and cheap fuels. An investigation has been computationally carried out to explore the influences of hydrogen and nitrogen addition on engine performance such as indicated power and indicated specific energy consumption and amounts of pollutant emissions like NOx, soot, and CO in an HSDI (High-Speed Direct Injection) diesel engine. Optimized sub-models, such as turbulence model, spray model, combustion model and emissions models have selected for the main CFD code. Meanwhile, HF (Homogeneity Factor) has been employed for analysing in-cylinder air-fuel mixing quality under various addition conditions. After validations with experimental data of diesel combustion with a single addition of 4% hydrogen and combined addition of 6% hydrogen + 6% nitrogen, investigations have conducted for modeling mixing and combustion processes with additions of hydrogen and nitrogen by ranges of 2–8% (v/v). Results showed that a single addition of H2 increased NOx and decreased CO and soot and improved ISEC and IP. In the case of nitrogen addition, NOx decreased, both CO and soot emission increased and ISEC and IP considerably ruined compared with NDC operation. Based on the results obtained for simultaneous addition of N2 (8% of v/v) and H2 (8% of v/v), NOx and soot emissions decreased by 11.5% and 42.5% respectively, and ISEC and IP improved 25.7% and 13%, respectively. But amount of CO emissions had an increase of 52% should be paid necessary attention as a main disadvantage.  相似文献   

16.
Biodiesel is a promising alternative fuel because of its renewability and extensive source of raw materials. Butanol can be blended in biodiesel to reduce the kinematic viscosity and promote the fuel atomization. In this respect, biodiesel was blended with 10% and 20% n-butanol, and the combustion characteristics and particulate emissions of the fuel blends were tested in a turbocharged, 6-cylinder, common rail diesel engine at a constant speed of 1400 rpm under seven engine loads. The experimental results show that under various engine loads, all of the butanol and biodiesel fuel blends provide faster combustion than diesel due to the higher oxygen content of n-butanol and the lower cetane number of butanol which results in stronger premixed combustion. The addition of butanol is beneficial to concentrating the heat release and thus shorten the combustion duration. With an increased proportion of butanol, soot emissions of butanol and biodiesel fuel blends decrease, the number concentration and volume concentration of ultrafine particles (UFPs) reduce noticeably. Meanwhile, the geometric mean diameters of UFPs decrease with an increase in butanol. With an increase of the engine loads, the number concentration peaks of UFPs gradually transfer from the size range of nucleation mode particles (NMPs) to the size range of accumulation mode particles (AMPs) due to the elevated combustion temperatures and high equivalence ratios. Moreover, biodiesel and fuel blends exhibit a higher percentage of NMPs as compared to diesel because of the fuel-bound oxygen, zero aromatics, and low sulfides.  相似文献   

17.
NOx emissions have always been a main concern in the development of diesel engines. This paper summarizes the studies about NOx emission reduction in diesel engines. The need for meeting the stringent requirements with regard to NOx emissions in a diesel engine has led to the development of a range of after treatment techniques. After treatment methods are required to reduce NOx emissions that cannot be controlled by fuel composition and combustion phenomena. Current after treatment techniques that are being employed are Selective Catalytic Reduction (SCR), Lean NOx Trap (LNT) and SCR Filter (SCRF). The benefits and constraints of different types of SCR are discussed. Urea SCR is a prominent well proven technology. Urea SCR produces 96–99% conversion efficiency with the help of a reductant NH3. The operating parameters such as nature of catalyst, temperature range of catalyst, flow of DEF (Diesel Exhaust fluid) to injector and mixing of NH3 and NOx are discussed. Hybrid SCR such as Cu-SCR + Fe-SCR, SCR + LNT moderates fuel consumption and augments the catalytic activity at low temperature. SCRF has low cell density (200–300 csi vs 400–600 csi for SCR), and also has lower deNOx efficiency for a number of reasons. Pre-stored NH3 and Preheating helps in low temperature reaction of SCRF. Technical problems in aqueous urea systems have led to the evolution of solid SCR system (SSCR). This review incorporates the study of solid ammonium salts decomposition, temperature range of the salts and infrastructure required for SSCR.  相似文献   

18.
Though, as a renewable energy resource, alcohol fuel has many advantages in China, it is difficult for diesel engines to operate on alcohol due to its low cetane number and high latent heat of vaporization. This paper proposes an approach to its ignition problem by combining internal exhaust gas recirculation (EGR) with injection of small diesel fuel. Based on this approach, a two-stroke single-cylinder diesel engine was developed. Preliminary studies demonstrated that the engine can run on alcohol with almost zero level of smoke and low exhaust gas temperature, and that the engine operating on alcohol has lower nitrogen oxide (NOx) emissions and 2–3% higher effective thermal efficiency than that operating on diesel fuel in moderate and high load zones.  相似文献   

19.
In this study, effects of hydrogen-addition on the performance and emission characteristics of Methanol-Gasoline blends in a spark ignition (SI) engine were investigated. Experiments were conducted with a four-cylinder and four stroke spark ignition engine. Performance tests were performed via measuring brake thermal efficiency, brake specific fuel consumption, cylinder pressure and exhaust emissions (CO, CO2, HC, NOx). These performance metrics were analyzed under three engine load conditions (no load, 50% and 100%) with a constant speed of 2000 rpm. Methanol was added to the gasoline up to 15% by volume (5%, 10% and 15%). Besides, hydrogen was added to methanol-gasoline mixtures up to 15% by volume (3%, 6%, 9% and 15%). Results of this study showed that methanol addition increases BSFC by 26% and decreases thermal efficiency by 10.5% compared to the gasoline. By adding hydrogen to the methanol - gasoline mixtures, the BSFC decreased by 4% and the thermal efficiency increased by 2% compared to the gasoline. Hydrogen addition to methanol – gasoline mixtures reduces exhaust emissions by about 16%, 75% and 15% of the mean average values of HC, CO and CO2 emissions, respectively. Lastly, ?t was concluded that hydrogen addition improves combustion process; CO and HC emissions reduce as a result of the leaning effect caused by the methanol addition; and CO2 and NOx emission increases because of the improved combustion.  相似文献   

20.
In the present work, the optimum biodiesel conversion from waste cooking oil to biodiesel through transesterification method was investigated. The base catalyzed transesterification under different reactant proportions such as the molar ratio of alcohol to oil and mass ratio of catalyst to oil was studied for optimum production of biodiesel. The optimum condition for base catalyzed transesterification of waste cooking oil was determined to be 12:1 and 5 wt% of zinc doped calcium oxide. The fuel properties of the produced biodiesel such as the calorific value, flash point and density were examined and compared to conventional diesel. The properties of produced biodiesel and their blend for different ratios (B20, B40, B60, B80 and B100) were comparable with properties of diesel oil and ASTM biodiesel standards. Tests have been conducted on CI engine which runs at a constant speed of 1500 rpm, injection pressure of 200 bar, compression ratio 15:1 and 17.5, and varying engine load. The performance parameters include brake thermal efficiency, brake specific energy consumption and emissions parameters such as Carbon monoxide (CO), Hydrocarbon (HC), Oxides of Nitrogen (NOx) and smoke opacity varying with engine load (BP). Diesel engine's thermal performance and emission parameters such as CO, HC, and NOx on different biodiesel blends demonstrate that biodiesel produced from waste cooking oil using heterogeneous catalyst was suitable to be used as diesel oil blends and had lesser emissions as compared to conventional diesel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号