首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Initially, large‐scale lager beer brewing with sorghum malts proved highly intractable due to a number of biochemical problems including: high malting losses estimated at 10–30% as against 8–10% for barley; high gelatinisation temperatures which limited starch solubilisation/ hydrolysis by the amylolytic enzymes during mashing; low extract yield/low diastatic power (DP) due to inadequate hydrolytic enzyme activities especially β‐amylase; low free α‐amino nitrogen (FAN) due to inadequate proteolysis limiting yeast growth during fermentation; high wort viscosities/beer filtration problems due to low endo‐β‐1,3; 1–4‐glucanase activities on the endosperm cell walls causing the release of some β‐glucans. Strident research efforts using improved Nigerian sorghum malt varieties (SK5912, KSV8 and ICSV400) have reported some encouraging results. The knowledge of the biochemical integrity of the endo‐β‐glucanases of the sorghum malt is helping to elucidate their mode of activity in the depolymerisation of the β‐glucans. This is bound to ensure process efficiency in sorghum beer brewing, reduce beer production costs and ultimately, produce a Pilsner‐type of lager beer with 100% sorghum malt.  相似文献   

2.
Barley (Hordeum distichon var. Harrington) was steeped, germinated and extracted to observe the order of enzyme development. Different parts of the barley kernel were extracted to observe the order of enzyme development during the malting process. Five enzymes were investigated: carboxypeptidase (EC 3.4.16.1), endo‐β1–3, 1–4‐glucanase (EC 3.2.1.73), endo‐B1‐4‐xylanase (EC 3.2.1.136), arabinofuranosidase (EC 3.2.1.55), and α‐amylase (EC 3.2.1.1). Early development of carboxypepti‐dase, followed by later development of β‐glucanase, then α‐amy‐lase, confirmed earlier reports concerning the sequence of synthesis for these activities. However, xylanase developed during the steeping of barley and early in germination, whereas other authors found this enzyme to develop much later in the malting process. Enzyme activities developed to higher levels in the proximal end of kernels for all enzymes except xylanase, which was evenly distributed throughout the kernel. Enzyme development was tested in sterile barley annuli [embryo‐less cross sections taken through the grain, and thus comprising rings of tissue with husk outermost and starchy endosperm innermost] under four effector conditions. Water controls mirrored the development pattern observed in whole barley kernels. Gibberellic acid (GA3) promoted higher total enzyme activity and development of all enzymes at the same time. Abscisic acid (ABA) promoted earlier development of late developing enzymes (xylanase, arabinofuranosidase and α‐amylase) and significantly higher levels of xylanase than when treatment was with water alone. Mixtures of GA and ABA showed a non‐exclusive, combined response of higher activity levels and a shifting of the initiation of enzyme development. Treatment with a combination of GA and calcium chloride triggered signifycantly higher carboxy‐peptidase activity and significantly lower xylanase activity as compared to treatment with GA or with GA/ABA mixtures.  相似文献   

3.
The effect of germination moisture and time on pearl millet malt quality was investigated. Two pearl millet varieties SDMV 89004 and 91018 were germinated at 25°C under three different watering regimes for 5 days. As with sorghum malting, diastatic power, beta‐amylase activity, free α‐amino nitrogen (FAN), hot water extract and malting loss all increased with level of watering. However, pearl millet malt had a much higher level of beta‐amylase and higher FAN than sorghum malt and a similar level of extract. Malting losses were similar or lower than with sorghum. Thus, it appears that pearl millet malt has perhaps even better potential than sorghum malt in lager beer brewing, at least as a barley malt extender, especially in areas where these grains are cultivated and barley cannot be economically cultivated. Also, its increased use in commercial opaque beer brewing, where sorghum malt is currently used, could be beneficial.  相似文献   

4.
The increase of temperature at the beginning, in the middle and at the end of malting has been evaluated in terms of quality parameters (malting losses, index of acrospire development, friability, HWE, viscosity, SNR) and enzyme (β‐glucanase and α‐amylase) development, in a good quality malting barley (Otis) and a higher protein‐higher β‐glucan content barley used for feed (Extra). A shift from 15 to 20°C at the beginning of malting was shown to increase acrospire development, friability, HWE and SNR and to reduce viscosity, without significantly affecting malting losses. This effect was related to higher β‐glucanase and α‐amylase activities within each variety. However, the same enzyme activities were not directly related to a better malting quality when the two genotypes were compared. This confirms previous indications that diversity in malting performance between genotypes cannot simply be traced back to differences in enzyme activities; but, indeed, it suggests that, for a defined barley lot, changes in the levels of enzyme activities following different malting procedures may have a direct effect on malt quality.  相似文献   

5.
To continue our effort to analyse the genetic (varietal) and environmental (sites and years) effects on malting quality of barley, we have field‐tested four barley varieties, two‐ and six‐rowed, European and North American, in Spain and Canada in 1998 and 1999. The Spanish trials were autumn‐sown whereas the Canadian ones were spring‐sown. Barley grain was analysed for total protein and hordein contents and micromalted. Canadian‐grown barleys had significantly lower contents of grain protein and all‐three hordein fractions than the Spanish ones. They also had lower malt respiratory losses, wort β‐glucan and viscosity but lower fine‐ and coarse‐ground malt extract yield, friability, free amino nitrogen, Kolbach index, α‐amylase and diastatic power. In other words, the Canadian‐grown barleys, despite showing lower protein and hordein contents, produced malt of inferior quality than their Spanish counterparts, which, overall, produced higher quantities of degrading enzymes (amylolytic, proteolytic and cytolytic) during germination, thus being able to attain higher extract yield levels.  相似文献   

6.
A preliminary study of malting conditions for six Thai rice cultivars was conducted. Three non‐glutinous rice cultivars (KDML105, PT60, and WR) and three glutinous rice cultivars (SPT, RD6, and KND) were selected. The steeping durations (24, 48, and 72 h) and temperatures (20, 25 and 30°C) were investigated for their effect on α‐ and β‐amylase, the key enzymes for malt quality evaluation. During steeping, the production of both enzymes was lower than at the germination process. The longer the steeping duration, the lower the maximum β‐amylase activity obtained. The contradictory effect was observed for α‐amylase activity, near the end of the germination time. Additionally, temperature influenced the water absorption content as well as the amylolytic enzyme activity. Particularly at 30°C, the maximum β‐amylase activity (6.7 unit/mg protein) was found in KND malt steeped for 24 h, and maximum α‐amylase activity (20 unit/mg protein) was found in PT60 malt steeped for 72 h. The amount of enzyme production depended on the variety rather than the amylose content in the rice. The optimal condition for malting rice regarding β‐amylase activity and α‐amylase activity was analyzed at 30°C, with steeping for 24 h and germination for 4–5 days.  相似文献   

7.
The protein composition of barley partly determines its quality in terms of malting and brewing. For this reason, the water‐soluble proteins of two different barley cultivars were investigated by gel electrophoresis and matrix‐assisted laser desorption/ionization mass spectrometry. Mass spectra were obtained directly from barley extracts by using three matrices. According to the quality of the measured spectra, it was possible to establish which matrix was the most suitable for the analysis of water‐soluble proteins from barley. We found that the protein patterns did not differ significantly between Jersey and Tolar varieties. However, our results showed the influence of the malting process on the posttranslational modification of some water‐soluble barley proteins. These proteins also survive the brewing process and they are very important for the formation and stability of beer foam. Several barley proteins were also identified by proteomic analysis.  相似文献   

8.
Prediction of malt fermentability (apparent attenuation limit — AAL) by measurement of the diastatic power enzymes (DPE), α‐amylase, total limit dextrinase, total β‐amylase, β‐amylase thermostability, and the Kolbach index (KI or free amino nitrogen — FAN) is superior to the conventional use of diastatic power (DP) alone. The thermostability of β‐amylase is known to be an important factor in determining fermentability, thus the thermostability of the other relatively thermolabile enzyme, limit dextrinase, was investigated to determine if it was also useful in predicting fermentability. To facilitate this aim, methods were developed for a rapid and cost efficient assay of both β‐amylase and limit dextrinase thermostability. Internationally important Australian and international malting varieties were compared for their total limit dextrinase and β‐amylase activity and thermostability. Interestingly, the level of limit dextrinase thermostability was observed to be inversely correlated with total limit dextrinase activity. The prediction of malt fermentability was achieved by both forward step‐wise multi‐linear regression (MLR) and the partial least squares (PLS) multivariate model development methods. Both methods produced similar identifications of the parameters predicting wort fermentability at similar levels of predictive power. Both models were substantially better at predicting fermentability than the traditional use of DP on its own. The emphasis of this study was on the identification of predictive factors that can be consistently used in models to predict fermentability, because the model parameter estimates will subtly vary depending on mashing conditions, yeast strain/fermentation conditions and malt source. The application of these multivariate model development methods (PLS and MLR) enabled the identification of further potential fermentability predicting factors. The analyses divided the predictive parameters into those defined by DP enzymes and those associated with modification (KI, FAN, fine/coarse difference, wort β‐glucan and friability). Surprisingly, limit dextrinase thermostability was not a substantial predictor of fermentability, presumably due to its negative correlation with total limit dextrinase activity. The application of these insights in the malting and brewing industries is expected to result in substantial improvements in brewing consistency and enable more specific quality targets for barley breeder's progeny selection cut‐off limits to be more precisely defined.  相似文献   

9.
10.
Barley represents an important source of total dietary fiber (TDF) and β‐glucans. The chemical composition and partial characterization of two Brazilian barley experimental lines, hull‐less and malting, are reported. The range in diameter of the A‐ and B‐type granules was similar in both barley lines, 15 to 28 µm and 8 to 10 µm, respectively. Higher values for total starch, damage starch, ash, TDF and insoluble dietary fiber (IDF) were observed in the malting line while β‐glucan content was similar in both samples. The malting barley line had higher values of total isolated starch, as well as residual protein and total lipids in starch. The starch from the hull‐less barley line had lower swelling power and higher solubility than malting barley.  相似文献   

11.
Existing methods of assay of malt starch‐degrading enzymes were critically appraised. New methods based on natural substrates, namely starch and its natural intermediate‐derivative, were developed for all the enzymes, except limit dextrinase for which pullulan was used. Thermostability, optimal temperatures and pHs were established. α‐Amylase and limit dextrinase were the most thermostable and β‐amylase, α‐glucosidase and maltase were the least stable while diastase occupied an intermediate position. The optimal temperatures were congruent with thermostability, β‐ amylase having the lowest (50°C) and α‐amylase the highest (65°C) with the remaining enzymes, including diastase, falling in between. In contrast, α‐amylase has the lowest optimal pH (pH 4.5) and β amylase the highest (pH 5.5) while the others have pHs in between the two values. The roles of the enzymes were evaluated taking into account the level of activity, thermostability, optimum pH, the nature of the product(s), and the relevance to brewing. β‐Amylase production of maltose was synergistically enhanced, mostly by α‐amylase but also limit dextrinase. α‐Glucosidase and maltase are unimportant for brewing, because of their low activity and the negative impact on β‐amylase activity and the negative effect of glucose on maltose uptake by yeast. The starch‐degrading enzymes (diastase) in a gram of malt were able to degrade more than 8 g boiled starch into reducing sugars in 10 min at 65°C. The latter, suggests that it will be possible to gelatinise most of the malt starch at a higher temperature and ensure its hydrolysis to fermentable sugars by mixing with smaller portions of malt and mashing at lower temperatures e.g. 50–60°C.  相似文献   

12.
Mainstream lager beer brewing using the tropical cereals sorghum, maize and rice, either as malt or as raw grain plus commercial enzymes, is becoming widespread. This review examines the differences in composition between these tropical cereals and barley and their impact on brewing processes and beer quality. All of these cereals have a starch gelatinization temperature some 10 °C higher than barley. The sorghum prolamin proteins are particularly resistant to proteolysis owing to disulphide cross‐linking involving γ‐kafirin. Unlike barley, the major endosperm cell wall components in sorghum and maize are arabinoxylans, which persist during malting. The rice cell walls also seem to contain pectic substances. Notably, certain sorghum varieties, the tannin‐type sorghums, contain considerable levels of condensed tannins (proanthocyanidins), which can substantially inhibit amylases, and probably also other brewing enzymes. Tropical cereal malts exhibit a similar complement of enzymic activities to barley malt, with the notable exception of β‐amylase, which is much lower and essentially is absent in their raw grain. Concerning beer flavour, it is probable that condensed tannins, where present in sorghum, could contribute to bitterness and astringency. The compound 2‐acetyl‐1‐pyrroline, responsible for the popcorn aroma of maize and also the major aroma compound in rice, presumably affects beer flavour. However, much more research is needed into tropical cereals and beer flavour. Other future directions should include improving hydrolysis of prolamins into free amino nitrogen, possibly using prolyl carboxypeptidases and investigating tropical cereal lines with useful novel traits such as high amylopectin, high protein digestibility and low phytate. Copyright © 2013 The Institute of Brewing & Distilling  相似文献   

13.
This study investigated the impact of kilning on α‐amylase, β‐amylase (total and soluble), β‐glucanase and protease activities in buckwheat malt. Common buckwheat (Fagopyrum esculentum) was steeped at 10°C for 12 h, germinated at 15°C for 4 days and kilned at 40°C for 48 h. Moisture content and enzymatic activities were determined throughout the kilning period. Results showed moisture content was reduced from 44% to 5% after 48 h of kilning at 40°C. β‐Amylase was found to exist in a soluble and latent form in buckwheat. Maximum activity of (a) α‐amylase, (b) total β‐amylase, (c) soluble β‐amylase, (d) β‐glucanase and (e) protease activity occurred after (a) 8, (b) 7, (c) 30, (d) 0, and (e) 8 h of kilning, respectively. The final malt exhibited very little β‐glucanase and cellulase activity. Proteolytic activity was low in buckwheat malt when compared to the barley malt control. All enzymatic activities were found to decrease during the kilning stage. Results indicated that after prolonged kilning at 40°C, inactivation of hydrolytic enzymes occurred; two‐stage kilning for shorter periods is recommended. Although, amylolytic activity was low in malted buckwheat, buckwheat malt shows potential as an ingredient for the brewing and cereal industry.  相似文献   

14.
The malting characteristics of sorghum malts produced locally in Cameroon for Bili‐Bili brewing were compared with those of malts produced in a laboratory. The analytical values of both malts were similar but the brewing potential of the laboratory malts were marginally better than those of the locally produced malts. Of the three cultivars examined, Madjeru had the lowest levels of β‐amylase, maltose levels and fermentability. The worts of the Madjeru filtered the slowest of the three malts. During malting β‐glucanase developed rapidly and development was temperature‐dependent.  相似文献   

15.
Brewery fermentations require continuous yeast growth to efficiently convert fermentable sugars to ethanol. Yeast growth is dependent on an adequate supply of nutrients, including minerals. Minerals are generally assured in the brewery with addition of nutrient supplements but reduced phytate barley malts could reduce the need for supplements. The present study used bulked segregant analysis to determine effects of the reduced phytate trait in barley on field performance, barley quality, malting quality and brewing performance. Two bulks from a doubled haploid population, along with a series of normal and reduced phytate controls, were grown at 3 to 5 western Canadian sites in 2006, 2007 and 2008. The normal and reduced phytate barley bulks had similar yields, but the reduced phytate barley had significantly lower test weight. Rates of endosperm modification were similar between the two phytate types, although, reduced phytate malt was significantly more friable. Malt extract and α‐amylase levels were significantly lower in the reduced phytate bulk. Zinc and magnesium levels were significantly higher in reduced phytate worts and these worts produced better yeast growth as indicated by greater amino acid use during fermentation. Brewing performance tended to be better with reduced phytate worts, but not consistently so, likely due to the lower levels of malt extract and α‐amylase. Results supported the incorporation of the reduced phytate trait into malting barley varieties, but with attention to breeding for improved test weight and levels of α‐amylase.  相似文献   

16.
Barley infection with Fusarium species has been a long standing problem for the malting and brewing industries. In this study, we evaluate the impact of Fusarium culmorum infected raw barley on the final malt quality. Barley grains were infected for 5 days at optimum fungal growth conditions. Grains were fully characterized and compared to standard barley grains. Due to fungal infection, germinative energy of infected barley grains decreased by 45%; its water sensitivity increased dramatically, and grains accumulated 199 μg/kg of deoxynivalenol (DON). Barley grains were subsequently malted for 8 days, fully characterized and compared to standard malt grains. Fungal growth behavior was evaluated during malting using a PCR-based assay and mycotoxins were measured using HPLC. Fungal biomass increased in grains, during all stages of malting. Infected malt accumulated 8-times its DON concentration during malting. Kernel ultrastructure was evaluated using scanning electron and confocal laser scanning microscopy. Infected malt grains were characterized by extreme structural proteolytic, (hemi)-cellulolytic and starch deterioration with increased friability and fragmentation. Infected grains had higher protease and β-glucanase activities, lower amylase activity, a greater proportion of free amino and soluble nitrogen, and a lower β-glucan content. Malt loss was over 27% higher in infected malt in comparison to the control. The results of this study revealed that 20% F. culmorum infected barley kernels lead to a significant reduction in malt quality as well as mycotoxin formation.  相似文献   

17.
The variation of β‐amylase activity and protein fractions in barley grains was evaluated using 148 barley genotypes grown in the field and two cultivars under in vitro culture with two temperature treatments during grain development. The results showed that there was significant genotypic variation in β‐amylase activity and protein fraction content. Regression analysis indicated that β‐amylase activity was positively correlated with total protein and the level of each of the protein fractions, with the correlation coefficient between β‐amylase activity and hordein content being the highest. Furthermore, higher post‐anthesis temperatures (32/26°C, day/night) significantly enhanced β‐amylase activity and protein fraction content, presumably as a result of reduced starch content. Albumin and glutelin were the least and most affected, respectively, in comparison with the plants under lower temperature (22/16°C). Temperature post‐anthesis also influenced the morphology of the starch A granule and the number of B granules, suggesting the altered starch structure may also be a reason for deteriorated malting quality under high temperatures.  相似文献   

18.
Four sorghum varieties (SK 5912, KSV 4, KSV 8, ICSV 400) were malted and extracted under similar conditions to assess their quality for brewing. The results showed that, in general, the sorghum varieties had high malting loss which was attributed to the high germination temperature used. The sorghum varieties also developed low levels of amylolytic activity (α‐amylase and β‐amylase), and with similar ratios. When the sorghum malts were mashed at different temperatures with the aid of commercial enzyme preparations, it was observed that mashing temperatures were more important in sugar release than additions of commercial enzymes. This was because at the lower mashing temperature, sorghum starch was not adequately gelatinised. However, when commercial enzyme preparations were added, low levels of enzymes were very effective in reducing wort viscosity and producing free amino nitrogen (FAN). Although, both commercial enzyme preparation and mashing temperature influenced sugar production, the malts produced glucose and maltose at similar ratios. Therefore good quality malts can be produced from sorghum, however mashing will employ commercial enzymes and mashing regimes are not yet optimised.  相似文献   

19.
The process of glycation during the malting process was monitored by the linear mode of matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐TOF MS). Water‐soluble proteins were investigated and two hulled barley varieties, Jersey and Tolar, were compared to the hulless line KM 1910. The crude extracts of the proteins obtained from the grain, the malt, and aliquots collected every 24 h during the malting process, were mixed with the matrix (2,6‐dihydroxyacetophenone) and analyzed by mass spectrometry. The protein composition of the barley changed during the malting process. The protein patterns did not differ significantly between the three varieties of the barley grains. However, significant differences between the malts were evident. Results showed the influence of the malting process on the glycation of certain water‐soluble barley proteins, nonspecific lipid transfer protein 1 (LTP1) and protein Z, of which the glycated forms survived the brewing process. These major barley proteins are very important for the formation and stability of beer foam and glycation may prevent their precipitation. Analysis results indicated that slight glycation of the proteins had occurred on the second day of malting. The linear mode of MALDI‐TOF mass spectrometry was used as a fast and simple method for monitoring the patterns of low‐molecular weight barley proteins with regard to barley variety discrimination. This procedure also enables the selection of barley varieties suitable for the malting industry.  相似文献   

20.
微生物对麦芽品质的影响   总被引:2,自引:0,他引:2  
大麦作为啤酒酿造的主要原料,其表面或外源的微生物在制麦过程中会影响麦芽的品质,并最终影响成品啤酒的质量。近年来研究发现在制麦过程中添加启动子培养物,既能作为微生物控制剂,抑制有害微生糖的生长;同时又能利用微生物分泌的水解酶系来提高麦芽的品质和安全性。本文介绍了麦芽中的微生物种类及其对麦芽质量的影响,并对添加不同启动子培养物对麦芽品质的改善及其工业化应用的可行性进行了探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号