首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cryptocrystalline basalt is one of the two major types of rocks exposed in the super large-scale underground powerhouse in Baihetan hydropower station in China.The rock of this type shows various sitespecific mechanical responses(e.g.fragmentation,fracturing,and relaxation) during excavation.Using conventional triaxial testing facility MTS 815.03,we obtained the stress-strain curves,macroscopic failure characteristics,and strength characteristics of cryptocrystalline basalt.On this basis,evolution of crack initiation and propagation was explored using the finite-discrete element method(FDEM) to understand the failure mechanism of cryptocrystalline basalt.The test results showed that:(1) under different confining stresses,almost all the pre-peak stress-strain curves of cryptocrystalline basalt were linear and the post-peak stresses decreased rapidly;(2) the cryptocrystalline basalt showed a failure mode in a form of fragmentation under low and medium confining stresses while fragmentation-shear coupling failure dominated at high confining stresses;and(3) the initial strength ratio(σ_(ci)/σ_f,where σ_(ci)and σ_f are the crack initiation strength and peak strength,respectively) ranged from 0.45 to 0.55 and the damage strength ratio(σ_(cd)/σ_f,where σ_(cd) is the crack damage strength) exceeded 0.9.The stress—strain curve characteristics and failure modes of cryptocrystalline basalt could be reflected numerically.For this,FDEM simulation was employed to reveal the characteristics of cryptocrystalline basalt,including high σ_(cd)/σ_f values and rapid failure after σ_(cd),with respect to the microscopic characteristics of mineral structures.The results showed that the fragmentation characteristics of cryptocrystalline basalt were closely related to the development of tensile cracks in rock samples prior to failure.Moreover,the decrease in degree of fragmentation with increasing confining stress was also correlated with the dominant effect of confining stress on the tensile cracks.  相似文献   

2.
This study presents the first step of a research project that aims at using a three-dimensional(3D) hybrid finite-discrete element method(FDEM) to investigate the development of an excavation damaged zone(EDZ) around tunnels in a clay shale formation known as Opalinus Clay. The 3D FDEM was first calibrated against standard laboratory experiments, including Brazilian disc test and uniaxial compression test. The effect of increasing confining pressure on the mechanical response and fracture propagation of the rock was quantified under triaxial compression tests. Polyaxial(or true triaxial) simulations highlighted the effect of the intermediate principal stress(s2) on fracture directions in the model: as the intermediate principal stress increased, fractures tended to align in the direction parallel to the plane defined by the major and intermediate principal stresses. The peak strength was also shown to vary with changing σ2.  相似文献   

3.
The Hoek-Brown(HB) strength criterion has been applied widely in a large number of projects around the world.However,this criterion ignores the intermediate principal stress σ_2.Many evidences have demonstrated that the rock strength is dependent on σ_2. Thus it is necessary to extend the HB criterion into a three-dimensional(3D) form.In this study,the effect of σ_2 on the strength of rocks is identified by reviewing the true triaxial tests of various rock types reported in the literature.A simple 3D strength criterion is developed.The modified criterion is verified by the true triaxial tests of 13 rock types.The results indicate that the modified criterion can achieve a good fit to most of rock types.It can represent a series of criteria as b varies.For comparisons,several existing 3D versions of the HB criterion are selected to predict the strengths of these rock types.It is indicated that the proposed criterion works better than other criteria.A substantial relationship between parameter b and the unconfined compressive strength is established,which guarantees that the proposed criterion can still work well even in the absence of true triaxial test data.  相似文献   

4.
This paper explores the potential implications of recent thinking in relation to rock mass strength for future tunnelling projects in Brisbane, Australia, particularly as they are constructed within deep horizons where the in situ stress magnitudes is larger. Rock mass failure mechanisms for the current tunnels in Brisbane are generally discontinuity controlled and the potential for stress-induced failure is relatively rare. For the road tunnels which have been constructed in Brisbane over the last 12 years, the strength of the more massive rock masses for continuum analysis has been estimated by the application of the Hoek-Brown (H-B) failure criterion using the geological strength index (GSI) to determine the H-B parameters mb, s and a. Over the last few years, alternative approaches to estimating rock mass strength for ‘massive to moderately jointed hard rock masses’ have been proposed by others, which are built on the work completed by E. Hoek and E.T. Brown in this area over their joint careers. This paper explores one of these alternative approaches to estimating rock mass strength for one of the geological units (the Brisbane Tuff), which is often encountered in tunnelling projects in Brisbane. The potential implications of these strength forecasts for future tunnelling projects are discussed along with the additional work which will need to be undertaken to confirm the applicability of such alternative strength criteria for this rock mass.  相似文献   

5.

The rock structure and three-dimensional stress state play a vital role in the mechanical behaviour of rock masses. Here, a series of true triaxial compression tests (σ1 > σ2 > σ3) are conducted on jointed marble (50 × 50 × 100 mm3) containing a natural stiff joint, taken from the China Jinping Underground Laboratory (CJPL-II) project. The purposes of this study are to investigate the joint effect and estimate the stress dependency of jointed marble. The test results show that jointed marble can fail in four distinct forms, namely, splitting or shearing of intact marble, opening of the joint or sliding along the joint, and these failure modes are influenced by the joint configuration and the minimum and intermediate principal stresses. Generally, jointed marble has more brittle post-peak behaviour than intact marble. The linear Mogi-Coulomb failure criterion can be modified to describe the strength of the jointed marble under true triaxial compression. The jointed marble strength is more sensitive to the minimum principal stress than to the intermediate principal stress. A maximum decline of 25% in strength is observed, which corresponds to a joint dip angle of 60° at σ2 = 60 MPa and σ3 = 30 MPa. The link between the experimental results and in situ fracturing at CJPL-II is also demonstrated.

  相似文献   

6.
The spPillar Stability Experiment (APSE) was conducted to study the rock mass response in a heated rock pillar between two large boreholes. This paper summarizes the back calculations of the APSE using a two-dimensional (2D) fracture propagation code FRACOD. To be able to model all the loading phases of the APSE, including the thermal loading, the code was improved in several ways. A sequential excavation function was developed to model promptly the stepwise changing loading geometry. Prior to the mod-elling, short-term compressive strength test models were set up aiming to reproduce the stress-strain behaviour observed for the sp diorite in laboratory. These models simulate both the axial and lateral strains of radial-controlled laboratory tests. The volumetric strain was calculated from the simulations and compared with the laboratory results. The pillar models include vertical and horizontal 2D models from where the stress in the pillar wall was investigated. The vertical model assesses the stability of the experimental rock volume and suggests the resultant stress below the tunnel floor in the pillar area. The horizontal model considers cross-sections of the pillar between the two large boreholes. The horizontal model is used to simulate the evolution of the stress in the rock mass during the excavation of the boreholes and during and the heating phase to give an estimation of the spalling strength. The modelling results suggest that the excavation-induced stresses will cause slight fracturing in the pillar walls, if the strength of the APSE pillar is set to about 123 MPa. Fracture propagation driven by thermal loading leads to minor spalling. The thermal evolution, elastic behaviour and brittle failure observed in the experiment are well reflected by the models.  相似文献   

7.
A new comprehensive set of data(n = 178) is compiled by adding a data set(n = 72) collected by Arioglu et al.(2007) to the data set(n = 106) presented in Rezazadeh and Eslami(2017). Then, the compiled data set is evaluated regardless of the variation in lithology/strength. The proposed empirical equation in this study comprises a wider range of uniaxial compressive strength(UCS)(0.15 MPa σ_(rc) 156 MPa) and various rock types. Rock mass cuttability index(RMCI) is correlated with shaft resistance(r_s) to predict the shaft resistance of rock-socketed piles. The prediction capacity of the RMCI versus r_s equation is also found to be in a fair good agreement with the presented data in Rezazadeh and Eslami(2017). Since the RMCI is a promising parameter in the prediction of shaft resistance, the researchers in the rock-socketed pile design area should consider this parameter in the further investigations.  相似文献   

8.
This paper reviews some strength criteria which include the role of the intermediate principal stress, and proposes a new criterion. Strength criteria of the form σoct=fN(σoct), such as Drucker–Prager, represent a rotation surface in the principal stress space, symmetric to the line σ1=σ2=σ3 in the meridian plane. Because σoct=fN(σoct) must fit the pseudo-triaxial compressive strength, it will have a non-physical outcome for triaxial extension. Mogi's criteria, σoct=g1(σm,2) and σmax=g2(σβ) are able to fit experimental data reasonably well, but the prediction of strength is not good and sometimes problematic. Strength criterion with the form λ(σ1, σ2, σ3)=F[η(σ1, σ2, σ3)], or a curve of two variables which can be decided by fitting pseudo-triaxial experimental data, is not expected to describe the strength under various stress states, no matter how high the correlation coefficient of λ and η is, or how low the misfit of the equation λ=F(η) is, as these seemingly good correlations usually result from the dominant influence of the maximum principal stress in the metrics of λ and η. The intermediate principal stress may improve the strength of rock specimen, but its influence will be restricted by σ3. Also when σ2 is high enough to cause failure in the σ2σ3 direction, the strength will decrease with the increasing σ2. The new strength criterion with exponent form has just such a character, and gives much lower misfits than do all seven criteria discussed by Colmenares and Zoback [Colmenares LB, Zoback MD. A statistical evaluation of intact rock failure criteria constrained by polyaxial test data for five different rocks. Int J Rock Mech Min Sci 2002;39:695–729].  相似文献   

9.
When a rock sample is extracted from an underground rock mass, it is subject to unloading, which will cause changes in the physical and mechanical properties. This article describes a laboratory experiment to determine the change of P-wave velocity of rock samples during a uniaxial compression test. It was found that the P-wave velocity vs. stress curves (V-S curves) of the rock samples could reflect three stages of bulk volume deformation commonly observed in a uniaxial compression test of rocks. When the applied stress was less than σ c (about 0.25–0.33 of the uniaxial compressive strength), the P-wave velocities increased rapidly with the increase of stress; this part of the V-S curves could be fitted with a power function. When the stress was greater than σ c, the P-wave velocities of rock samples increased more slowly and gradually approached the peak before decreasing dramatically near failure; the V-S curves above σ c could be fitted with a polynomial function of the second degree. During the V-S experiment, it could be also observed that the increasing rate of P-wave velocity decreased dramatically when the applied stress reached the overburden stress. An unloading index was defined as the ratio of the P-wave velocity under in situ overburden stress to the P-wave velocity at free stress and could be calculated from the measured V-S curves. Based on the calculated unloading index, the calculation of the intactness index of rock mass could be modified, and then an improvement of the basic quality (BQ) classification method of rock masses, which is used widely in China, was made.  相似文献   

10.
《Soils and Foundations》2022,62(1):101089
In recent years, the mechanical properties of frozen soils under complex stress states have attracted significant attention; however, limited by the test apparatus, true triaxial tests on frozen soils have rarely been conducted. To study the strength and deformation properties of frozen sand under a true triaxial stress state, a novel frozen soil testing system, i.e., a true triaxial apparatus, was developed. The apparatus is mainly composed of a temperature control system, a servo host system, a hydraulic servo loading system, and a digital control system. Several true triaxial tests were conducted at a constant minor principal stress (σ3) and constant intermediate principal stress ratio (b) to study the effect of intermediate principal stress (σ2) on the mechanical properties of frozen sand. The test results showed that the stress–strain curve can be mainly divided into three stages, with evidence of strain hardening characteristics. The strength, elastic modulus, and friction angle increased with the increase in b from 0 to 0.6, but decreased when increasing b from 0.6 to 1, whereas the cohesion varied little with the variation in b. The deformation in the direction of σ2 changed from dilative to compressive and that in the direction of σ3 remained dilative throughout.  相似文献   

11.
It is well known that shear wave propagates slower across than parallel to a fracture, and as a result, a travelling shear wave splits into two directions when it encounters a fracture. Shear wave splitting and permeability of porous rock core samples having single fracture were experimentally investigated using a high-pressure triaxial cell, which can measure seismic shear wave velocities in two directions mutually perpendicular to the sample axis in addition to the longitudinal compressive wave velocity. A single fracture was created in the samples using a modified Brazilian split test device, where the cylindrical sample edges were loaded on two diametrically opposite lines by sharp guillotines along the sample length. Based on tilt tests and fracture surface profilometry, the method of artificially induced tensile fracture in the sample was found to create repeatable fracture surfaces and morphologies. Seismic velocities of the fractured samples were determined under different levels of stress confinement and fracture shear displacement or mismatch. The effective confining stress was varied from 0.5 MPa to 55 MPa, while the fractures were mismatched by 0 mm, 0.45 mm and 1 mm. The degree of matching of the fracture surfaces in the core samples was evaluated using the joint matching coefficient (JMC). Shear wave splitting, as measured by the difference in the magnitudes of shear wave velocities parallel (VS1) and perpendicular (VS2) to the fracture, is found to be insensitive to the degree of mismatching of the fracture joint surfaces at 2 MPa, and decreased and approached zero as the effective stress was increased. Simple models for the stress- and JMC-dependent shear wave splitting and fractured rock permeability were developed based on the experimental observations. The effects of the joint wall compressive strength (JCS), JMC and stress on the stress dependency of joint aperture were discussed in terms of hydro-mechanical response. Finally, a useful relationship between fractured rock permeability and shear wave splitting was found after normalization by using JMC.  相似文献   

12.
Strength and failure modes of rock mass models with non-persistent joints   总被引:7,自引:0,他引:7  
Most problems faced by the practicing rock engineer involve the evaluation of rock mass strength and deformability. The theoretical evaluation of the mechanical properties of fractured rock masses has no satisfactory answer because of the great number of variables involved. One of these variables, the influence of which over rock mass behavior is poorly documented, is the degree of fracture persistence. This paper presents the results of biaxial tests performed on physical models of rock with non-persistent joints. The failure modes and maximum strengths developed were found to depend on, among other variables, the geometry of the joint systems, the orientation of the principal stresses, and the ratio between intermediate stress and intact material compressive strength (σ2c). Tests showed three basic failure modes: failure through a planar surface, stepped failure, and failure by rotation of new blocks. Planar failure and stepped failure are associated with high strength behavior, and small failure strains, whereas rotational failure is associated with a very low strength, ductile behavior, and large deformation.  相似文献   

13.
An experimental program was developed to evaluate the effect of multi-walled carbon nanotubes (MWCNTs) inclusion on elevated temperature properties of normal weight concrete (NWC) and lightweight concrete (LWC). The mechanical performance was assessed by conducting material property tests namely compressive strength (f’c,T), tensile strength (f’t,T), mass loss (MT), elastic modulus (ET), compressive toughness (Tc) and stress–strain response under unstressed and residual conditions in the range of 23°C to 800°C. The mechanical properties were measured by heating 100?×?200 mm cylindrical specimens to 200°C, 400°C, 600°C and 800°C at a heating rate of 5°C/min. Results show that the inclusion MWCNTs in cementitious matrices enhanced the fire endurance. The relative retention of mechanical strength and mass of concretes modified with MWCNTs was higher. The stress–strain response of specimens modified with MWCNTs was more ductile. Microstructural study of cyrofractured samples evidenced the homogenous dispersion of nano-reinforcements in host matrix. Furthermore, the data obtained from high temperature material property tests was utilized to develop mathematical relationships for expressing mechanical properties of modified mixes as a function of temperature.  相似文献   

14.
Hoek–Brown failure criterion is one of the widely used rock strength criteria in rock mechanics and mining engineering. Based on the theoretical expression of Hoek–Brown parameter m of an intact rock, the parameter m has been modified by crack parameters for fractured rocks. In this paper, the theoretical value range and theoretical expression form of the parameter m in Hoek–Brown failure criterion were discussed. A critical crack parameter B was defined to describe the influence of the critical crack when the stress was at the peak, while a parameter b was introduced to represent the distribution of the average initial fractures. The parameter m of a fractured rock contained the influences of critical crack (B), confining pressure (σ3) and initial fractures (b). Then the triaxial test on naturally fractured limestones was conducted to verify the modification of the parameter m. From the ultrasonic test and loading test results of limestones, the parameter m can be obtained, which indicated that the confining pressure at a high level reduced the differences of m among all the specimens. The confining pressure σ3 had an exponential impact on m, while the critical crack parameter B had a negative correlation with m. Then the expression of m for a naturally fractured limestone was also proposed.  相似文献   

15.
Layered rock mass of significant strength changes for adjacent layers is frequently observed in underground excavation,and dynamic loading is a prevalent scenario generated during excavation.In order to improve the driving efficiency and reduce engineering accidents,dynamic compression characteristics of this kind of rock mass should be understood.The dynamic properties of a layered composite rock mass are investigated through a series of rock tests and numerical simulations.The rock mass is artificially made of various proportions of sand,cement and water to control the distinct strength variations at various composite layers separated by parallel bedding planes.All rock specimens are prefabricated in a specially designed mould and then cut into 50 mm in diameter and 50 mm in height for split Hopkinson pressure bar(SHPB)dynamic compression testing.The test results reveal that increasing strain rate causes the increases of peak strength,σ_p,and the corresponding failure strain,ε_p,while the dynamic elastic modulus,E_d,remains almost unchanged.Interestingly,under the same strain rates,Ed of the composite rock specimen is found to decline first and then increase as the dip angle of bedding plane increases.The obtained rock failure patterns due to various dip angles lead to failure modes that could be classified into four categories from our dynamic tests.Also,a series of counterpart numerical simulations has been undertaken,showing that dynamic responses are in good agreement with those obtained from the SHPB tests.The numerical analysis enables us to Iook into the dynamic characteristics of the composite rock mass subjected to a broader range of strain rates and dip angles than these being tested.  相似文献   

16.
The behavior of strength and deformation of plain concrete under triaxial compression after 0, 25, 50 and 75 cycles of freeze-thaw are experimentally studied using the static and dynamic triaxial experimental machine. The compressive strength, strain at the peak of stress and stress–strain relationship under triaxial compression were measured. The failure modes of concrete specimens are also described. The experimental results showed that the triaxial compressive strength decreased as the freeze-thaw cycles were repeated for plain concrete. The influence of the number of freeze-thaw cycles and the stress ratio on the principal compressive stressesσ3σ3and corresponding strainε3ε3, stress–strain relationship was analyzed. On this basis, the failure criterion of concrete under triaxial compression after freeze-thaw cycles is proposed. It can serve as a reference for the maintenance, design and the life prediction of ocean structures, hydraulic structures, marine structures and offshore platform in cold regions.  相似文献   

17.
We conducted laboratory rock strength experiments in two ultra-fine-grained brittle rocks, hornfels and metapelite, which together are the major constituent of the Long Valley Caldera (California, USA) basement in the 2025–2996 m depth range. Both rocks are banded, and have very low porosity. Uniaxial compression tests at different orientations with respect to banding planes reveal that while the hornfels compressive strength is nearly isotropic, the metapelite possesses distinct anisotropy. Conventional triaxial tests in these rocks reveal that their respective strengths in a specific orientation increase approximately linearly with confining pressure. True triaxial compression experiments in specimens oriented at a consistent angle to banding, in which the magnitudes of the least (σ3) and the intermediate (σ2) principal stresses are different but kept constant during testing while the maximum principal stress is increased until failure, exhibit a behavior unlike that previously observed in other rocks under similar testing conditions. For a given magnitude of σ3, compressive strength σ1 does not vary significantly in both Long Valley rock types, regardless of the applied σ2, suggesting little or no intermediate principal stress effect. Strains measured in all three principal directions during loading were used to obtain plots of σ1 versus volumetric strain. These are consistently linear almost to the point of rock failure, suggesting no dilatancy. The phenomenon was corroborated by SEM inspection of failed specimens that showed no microcrack development prior to the emergence of one through-going shear failure plane steeply dipping in the σ3 direction. The strong dependency of compressive strength on the intermediate principal stress in other crystalline rocks was found to be related to microcrack initiation upon dilatancy onset, which rises with increased σ2 and retards the failure process. We infer that strength independence of σ2 in the Long Valley rocks derives directly from their non-dilatant deformation.  相似文献   

18.
《Soils and Foundations》2022,62(5):101220
In numerous real-life civil engineering practices, including multi-stage embankment construction and foundation pit excavation, the direction of the major principal stress σ1 becomes rotated. In these cases, the granite residual soil may be subjected to inclined consolidation (IC) with σ1 being inclined, because of the relatively high permeability as a result of the fissures formed during weathering. While the effect of the σ1 direction during the shear on the strength of granite residual soil (inherent strength anisotropy) has been primarily established, little is known about how the soil strength is affected by the direction of σ1 during consolidation. This paper presents the effects of IC on the shear strength properties of natural granite residual soil through undrained hollow cylinder torsional shear tests. The effect of the soil structure is also considered by testing remolded soil specimens. The results reveal that while IC changes neither the shape of stress–strain curve nor the specimen features at failure, it leads to an increased ultimate shear strength in terms of both the undrained strength and stress ratio, with the remolded soil being more affected. The presented data provide new insights into the understanding of residual soil strength behaviors.  相似文献   

19.
Bahrami  Amirreza  Nematzadeh  Mahdi 《Fire Technology》2021,57(3):1425-1456

In the present study, the mechanical properties and the residual stress–strain behavior of lightweight concrete (LWC) containing pumice coarse aggregate and rock wool waste (consisting of mineral fibers) were explored prior to and following thermal loading. Key variables included the volume percentage of rock wool waste (0%, 2.5%, 5%, 7.5%, and 10%) and exposure temperature (20°C, 200°C, 400°C, and 600°C). Here, parameters playing a role in the compressive performance of LWC containing rock wool waste were examined. These parameters included the elastic modulus, compressive strength, strain at peak stress, ultimate strain, toughness index, stress–strain relationship, and failure mode. Then, several empirical relationships were proposed to predict different mechanical characteristics in terms of temperature and volume percentage of rock wool. Furthermore, the compressive strength, elastic modulus, and strain at peak stress values were compared to the prediction results of the ACI 216, EN 1994-1-2, ASCE, and CEB-FIP 1990 codes. The results demonstrated that the mechanical properties of the LWC specimens were degraded with temperature. The highest degradation in the temperature range under study occurred at 600°C, with around 50% and 80% drop in the compressive strength and elastic modulus, respectively. Furthermore, after exposure to 600°C, an increase of 2 to 2.8 folds occurred in the strain at peak stress and an increase of 2.6 to 3.4 folds occurred in the ultimate strain of the specimens relative to those at the ambient temperature. In the end, two stress–strain models were presented to capture the compressive performance of LWC including rock wool waste after elevated temperature exposure based on the empirical equations obtained for the mechanical characteristics. These models showed a relatively good correlation with the experimental data.

  相似文献   

20.
《Soils and Foundations》2007,47(4):731-748
An artificial lightweight soil has been developed as a backfill to reduce the earth pressure behind port and harbor structures. To reduce the unit weight lightening ingredient such as air foam or EPS beads is mixed within slurry of dredged soft clay, while cement is used as stabilizer to warrant compressive strength. This experimental study aims to characterize the strength and deformation properties of lightweight treated soil cured in water pressure. Samples of two types of lightweight treated soil mixed with air foam or EPS were cured under various pressures, and subjected to undrained shearing tests on triaxial apparatus modified to detect volumetric change. Though high pressures inevitably compress lightener and consequently incur increment in unit weight, pressured curing did not reduce the compressive strength, qmax = (σac)max. It was also found that the deformation modulus E50 greatly decreases with relative confining pressure σc/qmax. The lightweight soils maintained relatively large residual strengths, showing no significant sign of brittle failure as often confronted in unconfined compression test. It was observed that the critical state line exists when subjected to ultimate strains, and that the peak deviator stress envelop was identified in effective stress path plane for air foam mixed cases alone. K0-consolidation tests were conducted on modified triaxial apparatus, showing that K0 values from the quasi one dimensional tests decline to as small as 0.1 to 0.15 around axial strain of 0.5~1% at near yielding points. Poisson's ratios based on both undrained shearing and K0-consolidation are compared in consistent tendency with minimal values of 0.1 to 0.2 near the identical yielding points. Yet it is revealed from the obtained compression curves that the compressibility increases drastically by some 100-fold when comparing before and after yielding for lightweight treated soil. This fact strikes the importance of not overloading lightweight treated soil by its compressive strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号