首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
New LANTIOX high-temperature conductors with the pyrochlore structure, (Ln1−xAx)2Ti2O7−δ (Ln = Dy, Ho, Yb; A = Ca, Mg, Zn; x = 0, 0.01, 0.02, 0.04, 0.07, 0.1), have been prepared at 1400-1600 °C using mechanical activation, co-precipitation and solid-state reactions. Acceptor doping in the lanthanide sublattice of Ln2Ti2O7 (Ln = Dy, Ho, Yb) with Ca2+, Mg2+ and Zn2+ increases the conductivity of the titanates except in the (Ho1−xCax)2Ti2O7−δ system, where the conductivity decreases slightly at low doping levels, x = 0.01-0.02. The highest conductivity in the (Ln1−xAx)2Ti2O7−δ (Ln = Dy, Ho, Yb; A = Ca, Mg, Zn) systems is offered by the (Ln0.9A0.1)2Ti2O7−δ and attains maximum value for (Yb0.9Ca0.1)2Ti2O6.9 and (Yb0.9Mg0.1)2Ti2O6.9 solid solutions:∼2 × 10−2 and 9 × 10−3 S cm−1 at 750 °C, respectively. Ca and Mg are best dopants for Ln2Ti2O7 (Ln = Dy, Ho, Yb) pyrochlores. Using impedance spectroscopy data, we have determined the activation energies for bulk and grain-boundary conduction in most of the (Ln1−xAx)2Ti2O7−δ (Ln = Dy, Ho; A = Ca, Mg, Zn) materials. The values obtained, 0.7-1.05 and 1-1.4 eV, respectively, are typical of oxygen ion conductors. We have also evaluated defect formation energies in the systems studied.  相似文献   

2.
The Gd2(TixZr1 − x)2O7 (x = 0, 0.25, 0.50, 0.75, 1.00) ceramics were synthesized by solid state reaction at 1650 °C for 10 h in air. The relative density and structure of Gd2(TixZr1 − x)2O7 were analyzed by the Archimedes method and X-ray diffraction. The thermal diffusivity of Gd2(TixZr1 − x)2O7 from room temperature to 1400 °C was measured by a laser-flash method. The Gd2Zr2O7 has a defect fluorite-type structure; however, Gd2(TixZr1 − x)2O7 (0.25 ≤ x ≤ 1.00) compositions exhibit an ordered pyrochlore-type structure. Gd2Zr2O7 and Gd2Ti2O7 are infinitely soluable. The thermal conductivity of Gd2(TixZr1 − x)2O7 increases with increasing Ti content under identical temperature conditions. The thermal conductivity of Gd2(TixZr1 − x)2O7 first decreases gradually with the increase of temperature below 1000 °C and then increases slightly above 1000 °C. The thermal conductivity of Gd2(TixZr1 − x)2O7 is within the range of 1.33 to 2.86 W m− 1 K− 1 from room temperature to 1400 °C.  相似文献   

3.
Sr2−xCaxBi4Ti5O18(x = 0, 0.05) powders synthesized by solid state route were uniaxially pressed and sintered at 1225 °C for 2 h. The obtained dense ceramics exhibited crystallographic anisotropy with a dominant c axis parallel to the uniaxial pressing direction which was quantified in terms of the Lotgering factor. Microstructure anisotropy of both compositions (x = 0, 0.05) consisted of plate like grains exhibiting their larger surfaces mostly perpendicular to the uniaxial pressing direction. Dielectric and ferroelectric properties of Sr2−xCaxBi4Ti5O18 ceramics were measured under an electric field (E) applied parallel and perpendicularly to uniaxial pressing direction. The obtained dielectric ?R(T) and polarization (P-E) curves depended strongly on E direction thus denoting a significant effect from microstructure and crystallographic texture. Sr2−xCaxBi4Ti5O18 properties were also significantly affected by Ca content (x): Curie temperature increased from 280 °C (x = 0) to 310 °C (x = 0.05) while ?R and remnant polarization decreased for x = 0.05. The present results are discussed within the framework of the processing and crystal structure-properties relationships of Aurivillius oxides ceramics.  相似文献   

4.
The effects of reduction and Ga-doping on the physicochemical properties of A-site deficient perovskites Sr0.9Ti0.8−xGaxNb0.2O3 (x = 0, 0.05, 0.1, 0.15 and 0.2) are reported. With 10% Ga doping, the sample sintered in air and treated at 1400 °C in H2 atmosphere exhibits the highest electrical conductivity. It is found that the Ga-doping lowers the sinterability but promotes the reduction of Sr0.9Ti0.8−xGaxNb0.2O3. The XRD analysis on the reduced samples suggests that some cations are reduced during the treatment. However, without high temperature pre-reduction, the improvement of Ga-doping is limited and the overall cell performance using Sr0.9Ti0.8−xGaxNb0.2O3 as an anode without catalysts is still relatively low.  相似文献   

5.
A series of yellow-emitting phosphors based on a silicate host matrix, Ca3 − xSi2O7: xEu2+, was prepared by solid-state reaction method. The structure and photoluminescent properties of the phosphors were investigated. The XRD results show that the Eu2+ substitution of Ca2+ does not change the structure of Ca3Si2O7 host and there is no impurity phase for x < 0.12. The SEM images display that phosphors aggregate obviously and the shape of the phosphor particle is irregular. The EDX results reveal that the phosphors consist of Ca, Si, O, Eu and the concentration of these elements is close to the stoichiometric composition. The Ca3 − xSi2O7: xEu2+ phosphors can be excited at a wavelength of 300-490 nm, which is suitable for the emission band of near ultraviolet or blue light-emitting-diode (LED) chips. The phosphors exhibit a broad emission region from 520 to 650 nm and the emission peak centered at 568 nm. In addition, the shape and the position of the emission peak are not influenced by the Eu2+ concentration and excitation wavelength. The phosphor for x = 0.045 has the strongest excitation and emission intensity, and the Ca3 − xSi2O7: xEu2+ phosphors can be used as candidates for the white LEDs.  相似文献   

6.
Single-crystalline Ti1−xNbxO2 (x = 0.2) films of 40 nm thickness were deposited on SrTiO3 (100) substrates by the pulsed laser deposition (PLD) technique. X-ray diffraction measurement confirmed epitaxial growth of anatase (001) film. The resistivity of Ti1−xNbxO2 films with x ≥ 0.03 is 2-3 × 10− 4 Ω cm at room temperature. The carrier density of Ti1−xNbxO2, which is almost proportional to the Nb concentration, can be controlled in a range of 1 × 1019 to 2 × 1021 cm− 3. Optical measurements revealed that internal transmittance in the visible and near-infrared region for films with x = 0.03 was more than 97%. These results demonstrate that the presently developed anatase Ti1−xNbxO2 is one of the promising candidates for the practical TCOs.  相似文献   

7.
Different compositions of [CuMoO4]x-doped Bi2Ti4O11 nanophotocatalyst (x = 0.05, 0.1, 0.5) have been prepared by chemical precursor decomposition (CPD) method using triethanolamine (TEA) and HNO3. Cu(II) is one of reactive species on the catalyst surface and Mo(VI) ion helps to generate charge compensation of lattice having poor catalytic properties. The photocatalytic properties based on the prepared samples for photodecolorization of thymol blue (TB) solutions are examined by Hg-lamp. The crystal structures of the prepared nano-powders are characterized by XRD, EDAX, UV-vis spectra, specific surface area (BET), and HRTEM analyses. The average particle size of copper molybdate-doped bismuth titanate ranges 32 ± 5 nm measured from TEM. Results show doping of copper molybdate of 5 mol% with bismuth titanate can significantly increase the photoactivity of bismuth titanate compared all the compositions studied except degussa P25 titania. The observed increased photocatalytic activity of copper molybdate-doped bismuth titanate ((CuMoO4)x(Bi2Ti4O11)1−x; CMxBT1−x) is attributed to the strong absorption of OH groups at the surface of the catalyst.  相似文献   

8.
The Er2+xTi2−xO7−δ (x = 0.096; 35.5 mol% Er2O3) solid solution and the stoichiometric pyrochlore-structured compound Er2Ti2O7 (x = 0; 33.3 mol% Er2O3) are characterized by X-ray diffraction (phase analysis and Rietveld method), thermal analysis and optical spectroscopy. Both oxides were synthesized by thermal sintering of co-precipitated powders. The synthesis study was performed in the temperature range 650-1690 °C. The amorphous phase exists below 700 °C. The crystallization of the ordered pyrochlore phase (P) in the range 800-1000 °C is accompanied by oxygen release. The ordered pyrochlore phase (P) exists in the range 1000−1200 °C. Heat-treatment at T ≥ 1600 °C leads to the formation of an oxide ion-conducting phase with a distorted pyrochlore structure (P2) and an ionic conductivity of about 10−3 S/cm at 740 °C. Complex impedance spectra are used to separately assess the bulk and grain-boundary conductivity of the samples. At 700 °C and oxygen pressures above 10−10 Pa, the Er2+xTi2−xO7−δ (x = 0, 0.096) samples are purely ionic conductors.  相似文献   

9.
The effect of CaO-SiO2-B2O3 (CSB) glass addition on the sintering temperature and dielectric properties of BaxSmyTi7O20 ceramics has been investigated using X-ray diffraction, scanning electron microscopy and differential thermal analysis. The CSB glass starts to melt at about 970 °C, and a small amount of CSB glass addition to BaxSmyTi7O20 ceramics can greatly decrease the sintering temperature from about 1350 to about 1260 °C, which is attributed to the formation of liquid phase. It is found that the dielectric properties of BaxSmyTi7O20 ceramics are dependent on the amount of CSB glass and the microstructures of sintered samples. The product with 5 wt% CSB glass sintered at 1260 °C is optimal in these samples based on the microstructure and the properties of sintering product, when the major phases of this material are BaSm2Ti4O12 and BaTi4O9. The material possesses excellent dielectric properties: ?r = 61, tan δ = 1.5 × 10−4 at 10 GHz, temperature coefficient of dielectric constant is −75 × 10−6 °C−1.  相似文献   

10.
Polycrystalline samples Bi4 − xGdxTi3O12 (x = 1, 1.5, 2) were investigated by X-ray diffraction, piezoresponse force microscopy and SQUID-magnetometry techniques. Increasing the gadolinium content was shown to suppress the spontaneous polarization in Bi4 − xGdxTi3O12, resulting in a polar-to-nonpolar phase transition near x = 1.5. In contrast to previous expectations, all these samples were found to be paramagnets. It was thus proven that introducing magnetically-active Gd ions into the lattice of the ferroelectric Aurivillius-type compound should not be considered as an effective way to achieve multiferroic behavior.  相似文献   

11.
Ca1+xCu3−xTi4O12 (x = 0, 0.25, 0.5, 1) ceramics were prepared using the conventional solid-state reaction method. The XRD patterns show that Ca1+xCu3−xTi4O12 compounds are comprised of CaCu3Ti4O12 (CCTO) and CaTiO3 (CTO) phases compared with the traditional CCTO and the content of CTO phase increases with the increase of x. The micrographs demonstrate that the sample for x = 0 has larger grain size 8-10 μm. However, for the samples (x = 0.25, 0.5, 1), the mean grain size decreases markedly with the increase of CTO phase. The measurement for electric properties indicates that the permittivity values decrease with the increase of Ca atoms, but the breakdown electric field Eb and the nonlinear coefficient α values have a behavior reverse to it. The nonlinear coefficient α reaches 28 for x = 1, yet it is only 11.4 for x = 0 in the current range of 1-10 mA. This can be ascribed to the reduction of grain size and the changes in the electric conductivity of main grains and grain boundary with increasing Ca/Cu ratio. Imbalances between Ca and Cu atoms with Ca in excess can favor the non-ohmic properties in detriment to the dielectric property and a suitable Ca/Cu ratio can be selected to adjust the permittivity and I-V nonlinearity, according to different desired device applications.  相似文献   

12.
Jin Won Kim 《Thin solid films》2010,518(22):6514-6517
V-doped K0.5Bi4.5Ti4O15 (K0.5Bi4.5  x/3Ti4  xVxO15, KBTiV-x, x = 0.00, 0.01, 0.03, and 0.05) thin films were prepared on a Pt(111)/Ti/SiO2/Si(100) substrate by a chemical solution deposition method. The thin films were annealed by using a rapid thermal annealing process at 750 °C for 3 min in an oxygen atmosphere. Among them, KBTiV-0.03 thin film exhibited the most outstanding electrical properties. The value of remnant polarization (2Pr) was 75 μC/cm2 at an applied electric field of 366 kV/cm. The leakage current density of the thin film capacitor was 5.01 × 108 at 100 kV/cm, which is approximately one order of magnitude lower than that of pure K0.5Bi4.5Ti4O15 thin film capacitor. We found that V doping is an effective method for improving the ferroelectric properties of K0.5Bi4.5Ti4O15 thin film.  相似文献   

13.
Er3+-doped Y2Ti2O7 and Er2Ti2O7 thin films were fabricated by sol-gel spin-coating method. A well-defined pyrochlore phase ErxY2-xTi2O7 was observed while the annealing temperature exceeded 800 °C. The average transmittance of the ErxY2-xTi2O7 thin films annealed at 400 to 900 °C reduces from ∼ 87 to ∼ 77%. The refractive indices and optical band gaps of ErxY2-xTi2O7 (x = 0-2) annealed at 800 °C/1 h vary from 2.20 to 2.09 and 4.11 to 4.07 eV, respectively. The ∼ 1.53 μm photoluminescence spectrum of Er3+ (5 mol%)-doped Y2Ti2O7 thin films annealed at 700 °C/1 h exhibits the maximum intensity and full-width at half maximum (∼ 60 nm).  相似文献   

14.
Microwave dielectric ceramics in the Sr1−xCaxLa4Ti5O17 (0 ≤ x ≤ 1) composition series were prepared through a solid state mixed oxide route. All the compositions formed single phase ceramics within the detection limit of in-house X-ray diffraction when sintered in the temperature range 1450-1580 °C. Theoretical density and molar volume decreased due to the substitution of Ca2+ for Sr2+ which was associated with a decrease in the dielectric constant (?r) and temperature coefficient of resonant frequency (τf) but an increase in quality factor, Qfo. Optimum properties were achieved for Sr0.4Ca0.6La4Ti5O17 which exhibited, ?r ∼ 53.7, Qfo ∼ 11,532 GHz and τf ∼ −1.4 ppm/°C.  相似文献   

15.
We investigated isomorphous substitution of several metal atoms in the Aurivillius structures, Bi5TiNbWO15 and Bi4Ti3O12, in an effort to understand structure-property correlations. Our investigations have led to the synthesis of new derivatives, Bi4LnTiMWO15 (Ln = La, Pr; M = Nb, Ta), as well as Bi4PbNb2WO15 and Bi3LaPbNb2WO15, that largely retain the Aurivillius (n = 1) + (n = 2) intergrowth structure of the parent oxide Bi5TiNbWO15, but characteristically tend toward a centrosymmetric/tetragonal structure for the Ln-substituted derivatives. On the other hand, coupled substitution, 2TiIV → MV + FeIII in Bi4Ti3O12, yields new Aurivillius phases, Bi4Ti3−2xNbxFexO12 (x = 0.25, 0.50) and Bi4Ti3−2xTaxFexO12 (x = 0.25) that retain the orthorhombic noncentrosymmetric structure of the parent Bi4Ti3O12. Two new members of this family, Bi2Sr2Nb2RuO12 and Bi2SrNaNb2RuO12 that are analogous to Bi2Sr2Nb2TiO12, possessing tetragonal (I4/mmm) Aurivillius structure have also been synthesized.  相似文献   

16.
Photosensitive Ti1−xCoxO2 gel films are prepared by chemical modification with benzoylacetone, and then their Fourier transform infrared spectra and ultraviolet visible spectra are measured. Results show that the chelate rings of benzoylacetone with Ti ions are formed in the Ti1−xCoxO2 gel films. With irradiation of UV light, the chelate rings are photolyzed, which leads to a change of the solubility of the Ti1−xCoxO2 gel films in methanol. Based on this, the micro-patterns of Ti1−xCoxO2 gel films are obtained. After the patterned gel films are dried at 200 °C and are fired at 550 °C for 1 h, negative patterned Ti1−xCoxO2 inorganic films are obtained. The Ti1−xCoxO2 films have an anantase structure and exhibit a room temperature ferromagnetic property.  相似文献   

17.
A bismuth and lead oxide based perovskite ternary solid solution xBi(Zn1/2Ti1/2)O3 − yPbZrO3 − zPbTiO3 (xBZT − yPZ − zPT) was investigated as an attempt to develop a high TC ferroelectric material for piezoelectric sensor and actuator applications. A morphotropic phase boundary (MPB) between rhombohedral and tetragonal phases was determined through an XRD study on a pseudobinary line 0.1BZT − 0.9[xPT − (1 − x)PZ] for composition 0.1Bi(Zn1/2Ti1/2)O3 − 0.5PbZrO3 − 0.4PbTiO3. Enhanced piezoelectric and ferroelectric activities were observed for MPB composition with dielectric constant εr′ ~ 23,000 at Curie temperature (TC) ≈ 320 °C, remanent polarization (Pr) = 35 μC/cm2, piezoelectric coefficient (d33) = 300 pC/N, unipolar strain = 0.15%, and electromechanical coupling coefficient (kP) = 0.45.  相似文献   

18.
The blue-emitting phosphors Ca(4−x)EuxSi2O7F2 (0 < x ? 0.05) have been prepared by solid-state reaction and the photoluminescence properties have been studied systematically. The electronic structure of calcium fluoride silicate Ca4Si2O7F2 was calculated using the CASTEP code. The calculation results of electronic structure show that Ca4Si2O7F2 has an indirect band gap with 5 eV. The top of the valence band is dominated by O 2p and Si 3p states, while the bottom of the conduction band is mainly composed of Ca 3d states. Under the 350 nm excitation, the obtained sample shows a broad emission band in the wavelength range of 400-500 nm with peaks of 413 nm and 460 nm from two different luminescence centers, respectively. The relative intensity of the two peaks changes with the alteration of the Eu2+ concentration. The strong excitation bands of the powder in the wavelength range of 200-420 nm are favorable properties for the application as lighting-emitting-diode conversion phosphor.  相似文献   

19.
The Bi5−xLaxTi3Co0.5Fe0.5O15 (0 ≤ x ≤ 0.4) ceramics were successfully synthesized by a modified Pechini process. The samples were characterized by X-ray diffraction and no impurity phase has been detected. The cell volume of the composites increases monotonously with the increase of La content, which indicates that La ions have been incorporated into the lattice of Bi5Ti3Co0.5Fe0.5O15. The magnetic measurements show that La doping on Bi sites has enhanced the magnetization of Bi5−xLaxTi3Co0.5Fe0.5O15 (0 ≤ x ≤ 0.4). Both the dielectric constants and loss tangent of all the samples decrease on increasing frequency and then become almost constant at room temperature. The La doped Bi5Ti3Co0.5Fe0.5O15 samples exhibit improved dielectric and ferroelectric properties, with higher dielectric constant enhanced remnant polarization and lower losses at room temperature.  相似文献   

20.
Trivalent/bivalent metal ions doped TiO2 thin films (MxTi1−xO2, M = Cr3+, Fe3+, Ni2+, Co2+, Mn2+ and x = 0.01, 0.05, 0.1, 0.15, 0.2) were deposited on Indium–tin oxide (ITO) coated glass substrates by spin coating technique. X-ray photoelectron spectroscopy (XPS) showed Ti4+ oxidation state of the Ti2p band in the doped p-TiO2. The homogenous MxTi1−xO2 was used to support n-ZnO thin films with thickness ∼40–80 nm and vertically aligned n-ZnO nanorods (NR) with length ∼300 nm and 1.5 μm. Current (I)–voltage (V) characteristics for the Ag/n-ZnO/MxTi1−xO2/ITO/glass assembly showed rectifying behavior with small turn-on voltages (V0) < 1 V. The ideality factor (η) and the resistances in both forward and reverse bias were calculated. The temperature dependence performance of these bipolar devices was performed and variation of the parameters with temperature was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号