共查询到17条相似文献,搜索用时 60 毫秒
1.
摘 要:掌纹识别是受到较多关注的生物特征识别技术之一。在各类掌纹识别的方法中, 基于方向特征的方法取得了很好的效果。为了进一步提升识别精度,提出一种融合全局和局部 方向特征的掌纹识别算法,主要融合了基于方向编码的方法、基于方向特征局部描述子的方法 和结合方向特征和相关滤波器的方法。其中前 2 种方法属于空间域方法,可很好地提取掌纹的 局部方向特征;而第 3 种方法属于频域方法,能有效地提取全局方向特征。在匹配值层对该 3 种方法的识别结果进行融合。本文算法在 2 个掌纹数据库上进行了验证,实验结果表明,本文 方法的识别性能明显优于其他几种掌纹识别方法。 相似文献
2.
提出了一种基于信息熵(information entropy)的GLBP掌纹识别算法(EGLBP),首次将该算法运用到掌纹中。同时,为了提高识别精度、降低算法复杂度,引入信息熵来度量掌纹所含的信息量,熵越大,所含信息量越多。首先对图像进行Gabor变换,分别计算变换后图像的信息熵,去除熵较小的几幅图像;然后对剩余的图像使用分块思想,对每块进行LBP特征提取,并联融合所有特征;最后使用卡方距离对掌纹所属类别进行判定。经过PolyU掌纹中心区域图像的验证,与传统掌纹识别算法相比,EGLBP算法识别率达到99.89%,识别时间为113.9ms,具有有效性和优越性。 相似文献
3.
研究掌纹准确识别问题,由于光照强度、位置移动、采集设备等影响,采集掌纹图像的分辨率较低。单一掌纹特征提取方法难以全面描述掌纹信息,导致掌纹识别率低。为了提高了掌纹识别率,提出一种基于Gabor滤波和LBP算法相融合的掌纹识别方法。首先对采集掌纹进行预处理,然后分别采用Gabor滤波和LBP算法进行特征提取,最后采用神经网络建立掌纹识别器。仿真结果表明,相对于单一特征提取算法,融合特征算法不仅提高了掌纹识别率,同时加快掌纹识别速度,能够很好满足实时掌纹识别系统的要求。 相似文献
4.
掌纹识别是模式识别及智能信息处理领域的研究热点。针对传统掌纹识别方法易受噪声影响,且旋转鲁棒性差的问题,提出基于分区的多块局部二值模式(MB-LBP)和梯度方向直方图(HOG)的掌纹识别方法。该算法首先利用分区MB-LBP和HOG算法分别提取掌纹的纹理、边缘特征,然后将提取的两种特征通过串联的方式进行融合,最后计算测试图像与训练图像的绝对值距离并利用最近邻分类器得出分类结果。实验对比传统算法(PCA、LBP和HOG),得到较高的掌纹识别率。因此,将基于分区多块局部二值模式与梯度方向直方图特征进行融合,可提取较完整的掌纹有效信息,对于光照不均匀和有位置变化的掌纹具有一定的健壮性,具有良好的掌纹识别性能。 相似文献
5.
基于子空间特征融合的两级掌纹识别算法 总被引:1,自引:0,他引:1
针对单一PCA或PCA只能提取掌纹的线性或非线性特征,单一分类器的掌纹识别率低缺陷,提出一种子空间特征融合的两级掌纹识别方法(PCA-KPCA-SVM)。首先采用子空间特征提取方法PCA、KPCA分别提取掌纹图像线性和非线性特征,然后基于融合特征总类间距离最大准则,计算出最佳的融合系数,得到PCA、KPCA的融合掌纹特征,最后将融合特征输入到欧式距离分类器进行掌纹识别,如果拒绝识别,则输入支持向量机进行二次识别。采用Polyu掌纹图像库进行测试实验,结果表明,相对于对比算法,PCA-KPCA-SVM提高了掌纹识别率,有效降低了掌纹的误识率和拒识率。 相似文献
6.
针对利用单一方法进行掌纹图像识别所得的识别率难以提高这一情况,提出一种利用掌纹图像经高斯高通滤波后的局部二进制模式特征和三级小波分解的细节图像的能量特征的融合特征进行掌纹识别的方法。在提取图像的局部二进制模式特征的时候,通过高斯高通滤波增强图像的对比度,从而提取出更有效的局部二进制模式特征,该特征对光照的变化具有一定的鲁棒性;小波变换的细节图像能量数据反映不同频率成分的局部细节特征。实验结果表明所提出的掌纹识别方法的有效性。 相似文献
7.
针对单一生物特征识别技术易受外界各种因素影响,识别率和稳定性有待提高的问题,提出一种掌纹掌脉图像超小波域融合识别算法NSCT-NBP。首先,对掌纹掌脉图像利用非下采样Contourlet变换(NSCT)进行分解,将得到的低频和高频子图像分别利用区域能量和图像自相似原理进行融合;然后,对融合后的图像利用近邻二值模式(NBP)提取纹理特征,获得特征向量;最后,通过计算特征向量间的汉明距离比较融合图像间的近似程度来计算等误率(EER)。在PloyU图库及自建图库上进行实验,结果表明,NSCT-NBP算法可获得最低的EER,分别为0.72%和0.96%,识别时间仅为0.0530 s和0.0871 s,与当前最优的基于小波变换和Gabor滤波器的掌纹掌脉融合方法相比,在两个图库上EER分别降低了4%和36.8%。NSCT-NBP算法能够有效融合掌纹掌脉图像的纹理特征,具有良好的识别性能,并且掌纹掌脉特征的融合增强了识别系统的安全性。 相似文献
8.
针对集成电路制造过程中由扫描式电子显微镜(Scanning Electron Microscope,SEM)产生的灰度图像二值化问题,提出一种利用图像边缘的梯度信息、通过统计重建SEM图像的方法。用Otsu方法分析SEM图像的噪声组成,通过滤波去噪过程,用Kirsch算子分析图像的梯度信息,再利用图像外边缘的梯度大于内边缘的梯度的特性,对每一个区域进行分类统计,根据统计信息进行最后的图像填充。实验结果表明,该算法在高分辨率的图像下显示出了高稳定性和高度自动化;在低分辨率的图像下,该方法有效避免了边缘提取失败带来的影响,能正确、完整地重建图像。 相似文献
9.
10.
首先利用小波变换增强掌纹、人脸图像;然后利用一种新的子空间分析方法——对角离散余弦变换和二维主元判别分析(Diagonal,Discrete Cosine Transform and Two-Dimensional Principle Component Analysis,Dia-DCT+2DPCA)相结合的算法提出了一种掌纹、人脸特征融合的识别方法;最后运用最小距离分类器进行识别。实验结果表明,该文提出的掌纹、人脸特征融合方法实现了特征层融合,有效地提高了身份识别的正确识别率。 相似文献
11.
掌纹ROI分割算法的研究与实现 总被引:1,自引:0,他引:1
掌纹感兴趣区(ROI)分割是掌纹识别的关键步骤,目前掌纹分割方法主要存在定位点不易确定和同类图像ROI提取偏移度较大等问题,为改善这些问题,提出一种新的ROI分割算法。首先确定手掌图像中的两个指谷点;然后利用手掌轮廓特定区域边界点拟合直线,以该直线为基准,以固定角度的方式建立直角坐标系,利用指谷点找到掌纹信息丰富的区域,确定掌纹的ROI,最后提取特征矢量进行匹配识别。实验结果表明,该算法分割掌纹ROI的准确度高、速度快,对同类图像分割的偏移度更小,掌纹ROI的提取率达98.2%,掌纹正确识别率提高了3%左右,为基于掌纹的身份认证系统的实现提供了理论和实验依据。 相似文献
12.
提取掌纹的最佳低维分类特征一直是掌纹识别研究领域的一个重要方向。针对掌纹图像具有丰富的纹理特征特点,提出一种基于加权自适应中心对称局部二值模式(WACS-LBP)与局部判别映射(LDP)相结合的掌纹识别方法。首先将掌纹感兴趣(ROI)图像分成大小均匀的小区域,利用自适应中心对称局部二值模式(ACS-LBP)算法获取不同区域的纹理特征直方图和权值,经过加权连接得到ROI的加权纹理特征直方图向量;再利用LDP算法对得到的特征向量进行维数约简;最后利用K-最近邻分类器进行掌纹识别。在掌纹公开数据库上进行实验,正确识别率高达97%以上。实验结果表明,该方法不仅是有效、可行的,而且研究思路比较明确。 相似文献
13.
14.
15.
16.
利用虹膜图像中丰富的结构和纹理特征作为身份鉴别的依据,与其他生物特征识别相比,具有更高的可靠性。根据虹膜内外灰度差,采用二值化方法提取瞳孔,用Canny算子精确定位虹膜的内边缘,利用微分积分算子定位外边缘,并对虹膜进行归一化、校准、增强等预处理;再利用2D-Gabor滤波提取纹理特征,最后比较Hamming距离,进行匹配与识别。实验结果表明,该方法效果良好,识别率高。 相似文献