共查询到18条相似文献,搜索用时 62 毫秒
1.
由于在实际应用中有大量的符号数据生成,符号数据聚类成为了聚类分析的一个重要研究领域.目前,已有许多符号数据聚类算法被提出,但将它们应用于大数据环境时,仍然存在计算成本高、运行速度慢等问题.文中提出了一种基于符号关系图的快速符号数据聚类算法.该算法使用符号关系图替代原始数据,缩小数据集的规模,有效地解决了这一问题.大量的... 相似文献
2.
一种面向高维符号数据的随机投影聚类算法 总被引:1,自引:0,他引:1
现实数据往往分布在高维空间中,从整个向量空间来看,这些数据间的联系非常分散,因此如何降低维数实现高维数据的聚类受到众多研究者的普遍关注.介绍了一种适用于符号型高维数据的随机投影聚类算法.其根据频率选择与聚类相关的维向量,随机产生并根据投影聚类效果择优选择聚类中心及相关维向量,将投影聚类算法扩展至符号数据空间.实验结果证实了这种算法的实用性与有效性. 相似文献
3.
聚类是数据挖掘领域中最活跃的研究分支之一,聚类技术在其他的科学领域也有广泛的应用。迄今为止已经提出了大量的聚类算法,其中基于密度的DBSCAN算法因其很多优点而备受关注,为了减少DBSCAN的区域查询次数,降低I/O开销而提出的改进算法有FDBSCAN、LSNCCP等。随着应用的发展,增量聚类显得越来越重要,而现有的增量聚类算法存在很大的局限性。基于LSNCCP,提出了一种有效的增量聚类算法,同时它也可以用于对LSNCCP进行性能优化。 相似文献
4.
5.
为了改进当前社会化标注系统在标签浏览和检索方面的弱点,提出一种基于加权网络分割的社会性标签聚类算法。算法基于标签节点的核心度和相似性对标签共现网络进行分割,并在聚类后自动生成该类的特征标签来代表该类簇。实验测试表明算法具有较好的聚类效果。 相似文献
6.
7.
8.
子空间聚类是高维数据聚类的一种有效手段,子空间聚类的原理就是在最大限度地保留原始数据信息的同时用尽可能小的子空间对数据聚类。在研究了现有的子空间聚类的基础上,引入了一种新的子空间的搜索方式,它结合簇类大小和信息熵计算子空间维的权重,进一步用子空间的特征向量计算簇类的相似度。该算法采用类似层次聚类中凝聚层次聚类的思想进行聚类,克服了单用信息熵或传统相似度的缺点。通过在Zoo、Votes、Soybean三个典型分类型数据集上进行测试发现:与其他算法相比,该算法不仅提高了聚类精度,而且具有很高的稳定性。 相似文献
9.
邓广彪 《数字社区&智能家居》2014,(31):7237-7240,7243
在数据库中增加数据且调整最小支持度时,数据库中关联规则会发生变化,为从数据量和最小支持度同时发生变化的数据库中快速获取频繁项集,发现变化后的关联规则,通过对FIM和AIUA算法进行分析,提出一种结合两种算法优点的增量数据关联规则挖掘My_FIM_AIUA算法,该算法能减少数据库扫描次数,减少候选项集数量。通过实验表明My_FIM_AIUA算法能在数据量和最小支持度同时变化时快速找到频繁项集,提高挖掘增量数据关联规则的速度。 相似文献
10.
邓广彪 《数字社区&智能家居》2014,(11):7237-7240
在数据库中增加数据且调整最小支持度时,数据库中关联规则会发生变化,为从数据量和最小支持度同时发生变化的数据库中快速获取频繁项集,发现变化后的关联规则,通过对FIM和AIUA算法进行分析,提出一种结合两种算法优点的增量数据关联规则挖掘My_FIM_AIUA算法,该算法能减少数据库扫描次数,减少候选项集数量。通过实验表明My_FIM_AIUA算法能在数据量和最小支持度同时变化时快速找到频繁项集,提高挖掘增量数据关联规则的速度。 相似文献
11.
面向分类数据的自组织神经网络 总被引:1,自引:2,他引:1
作为一种优良的聚类和降维工具,自组织神经网络SOM(SelfOrganizingFeatureMaps)已经得到广泛应用。其不足之处是仅适合于数值数据,这对时常需要处理分类型数据(Categoricalvalueddata)或数值型与分类型混合数据(Mixednumericandcategoricalvalueddata)的数据挖掘应用是不够的。该文提出了一种新的基于覆盖(Overlap)的距离函数并将其用于SOM训练。实验结果表明,在不增加时空开销的前提下可取得较好的聚类效果。 相似文献
12.
由于符号型数据缺乏清晰的空间结构,很难构造一种合理的相似性度量,从而使诸多数值型聚类算法难以推广至符号型数据聚类.基于此种情况,文中引入一种空间结构表示方法,把符号型数据转化为数值型数据,能够在保持原符号型数据的结构特征的基础上重新构造样本之间的相似度.基于此方法,将仿射传播(AP)聚类算法迁移至符号数据聚类中,提出基于空间结构的符号数据AP算法(SBAP).在UCI数据集中若干符号型数据集上的实验表明,SBAP可以使AP算法有效处理符号型数据聚类问题,并且可以提升算法性能. 相似文献
13.
Ming Lei Pilian He Zhichao Li 《通讯和计算机》2006,3(8):20-24
Most of the earlier work on clustering is mainly focused on numerical data the inherent geometric properties of which can be exploited to naturally define distance functions between the data points. However, the computational cost makes most of the previous algorithms unacceptable for clustering very large databases. The k-means algorithm is well known for its efficiency in this respect. At the same time, working only on numerical data prohibits them from being used for clustering categorical data. This paper shows how to apply the notion of "cluster centers" to a dataset of categorical objects, and a k-means-like algorithm for clustering categorical data is introduced. 相似文献
14.
15.
双聚类是一种理想的概念聚类方法。对范畴类数据而言,双聚类可以给出相关联的数据对象和属性值的簇集(包括重叠的情况)。该文提出了一种通用的双聚类框架,由局部模式群集计算双划分。该局部模式反映了数据对象和属性之间的强关联。 相似文献
16.
分布不均衡的数据在通过传统聚类分析的方式进行标注时,聚类效果容易偏向于样本数多的类,从而造成标注出现误差的问题。针对此问题提出改进的含有均衡约束聚类算法的标注方法,对不均衡数据的聚类标注准确率实现了比较有效的提高,方法包含数据初始聚类、专家知识调整,数据均衡化处理,含均衡约束聚类等步骤。通过初始聚类对不均衡数据进行初始类标签分配,专家知识调整对部分数据错误标注进行标签调整修改,对数据进行均衡化处理得到均衡数据集,通过均衡约束聚类对均衡数据进行标签最终精确分配。经仿真验证表明,上述方法比较有效的提高了不均衡数据标注准确率。 相似文献
17.
近年来符号数据的无监督学习在模式识别、机器学习、数据挖掘和知识发现等诸多领域扮演着越来越重要的角色。然而现有的针对符号数据的聚类算法(经典的K-modes系列算法等),相比数值型数据的聚类算法,在性能方面仍然有很大的提升空间。其根本原因在于符号数据缺乏类似数值数据那样清晰的空间结构。为了能够有效地发掘符号数据内在的空间结构,采用了一种全新的数据表示方案:空间变换方法。该方法将符号数据映射到相应的由原来的属性组成的新的 维度的欧氏空间中。在这一框架的基础上,为了找到符号数据更有代表性的模式,结合Carreira-Perpin提出的K-modes算法进行无监督学习。在9个常用的UCI符号数据集上进行了测试,与传统的符号数据聚类算法进行了实验比较,结果表明几乎在所有的数据集上提出的方法都是更加有效的。 相似文献