首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The nonlinear volt-ampere characteristics and small-signal ac capacitance and resistance of sintered ZnO containing 0.5 mol% Bi2O3 were measured. Many of the electrical properties are related directly to the microstructure, which consists of conductive ZnO grains separated by a continuous amorphous Bl2O3, phase. The origin of the nonlinear conduction in the intergranular phase was confirmed by experiments with evaporated thin films. The proposed conduction mechanism in varistors containing ZnO and Bi2O3 is a combination of hopping and tunneling in the amorphous phase.  相似文献   

2.
The crystalline phase, microstructure, semiconduction, and humidity-sensitive electrical conduction of MgCr2O4-TiO2 ceramics were studied. A solid solution with TiO2 up to 30 mol% occurs as a single phase with a pure MgCr2O4-type spinel structure. The humidity-sensitive electrical conduction of the MgCr2O4-TiO2 porous ceramics is the most promising for humidity-sensing devices.  相似文献   

3.
ZnO varistors with different amounts of ZnF2 from 0.00 to 0.80 mol% were prepared using a solid-state reaction technique, to explore the potential application of ZnO. The F-doping effects on the microstructure and electrical properties of ZnO-based varistors were investigated. The average grain size of ZnO increased from 4.93 to 6.48 μm as the ZnF2 content increased. Experimental results showed that as the ZnF2 content increased, the breakdown voltage decreased from 617 to 367 V/mm, and the nonlinear coefficient did not change much. However, a slight increase was observed in the leakage current. Besides, when the ZnF2 content increased, the donor concentration increased from 0.669 × 1018 to 8.720 × 1018 cm−3. The study indicated that ZnF2 played a similar role as sintering aids to promote grain growth and the substitutional F atoms in the bulk served as a donor to increase the donor concentration.  相似文献   

4.
Electrical conduction in tetragonal β-Bi2O3 doped with Sb2O3 was investigated by measuring electrical conductivity, ionic transference number, and Seebeck coefficient. The β-Bi2O3 doped with 1 to 10 mol% Sb2O3 was stable up to 600°C and showed an oxygen ionic and electronic mixed conduction, where the electron conduction was predominant at low oxygen pressures. The oxygen-ion conductivity showed a maximum at 4 mol% Sb2O3, whereas the activation energy for the ionic conduction remained unchanged for 4 to 10 mol% Sb2O3-doped specimens. These results were interpreted in terms of the oxygen vacancy concentration and the distortion of the tetragonal structure. The electron conductivity and its oxygen pressure dependence decreased with increasing Sb2O3 content. The fact that Sb5+ is partially reduced by excess electrons in heavily doped β specimens at low oxygen pressures is explained.  相似文献   

5.
The dc conductivities (α) of PbO-P2O5-V2O5 glasses containing up to 80 mol% V2O5 were measured at T = 100°C to T = 10°C below the glass transition temperature. Dielectric constants at 1 MHz, densities, and the fraction of reduced V ion were measured at room temperature. The conduction mechanism of glasses containing >10 mol% V2O5 was considered to be small-polaron hopping, as previously reported for other vanadate glasses. The temperature dependence of α was exponential, with α= (αo/ T ) exp(− W/kT ). When the V2O5 content was ≥50 mol%, W decreased and α increased with increasing V2O5 content, and the adiabatic approximation could be applied. In the composition range between 10 and 50 mol% V2O5, α increased with increasing V2O5 content, but W varied little. In this region, the hopping conduction was characterized as nonadiabatic. The effect of dielectric constants and V ion spacing on W is discussed.  相似文献   

6.
The effects of Nb2O5 and ZnO addition on the dielectric properties, especially the quality factor, of (Zr0.8Sn0.2)TiO4 (ZST) ceramics were investigated in terms of the sintered density acquired by the zinc. For ZST ceramics with 2 mol% added ZnO, the relative density of the samples decreased with >0.5 mol% addition of Nb2O5. On the other hand, for samples with 6 mol% added ZnO, the relative density remained >97%, even when the amount of Nb2O5 was increased to 2.0 mol%. When >0.5 mol% Nb2O5 was added, both the quality factor and the dielectric constant exhibited similar trends with sintered density. The ZST ceramics with 6 mol% added ZnO, especially, still manifested a quality factor >40 000 and a dielectric constant of 37, even when the amount of Nb2O5 was increased, values that are not explainable by the previously suggested electronic defect model.  相似文献   

7.
The dc electrical properties and microstructure of x (FeO-Fe2O3)-(100 – x )P2O5 glasses were investigated up to a maximum of x = 75 mol%. Results indicate that, in general, the minimum resistivity of the glass does not occur at equal Fe2+] and Fe3+] concentrations, although for the special case where x = 55 mol% the minimum does occur at Fe2+]/Fe total = 0.5, as reported by other investigators. Evidence presented shows that the position of the minimum resistivity is a function of total iron content. The minimum shifts to glasses richer in Fe2+] at higher total iron concentrations.  相似文献   

8.
The microstructure, crystal phase, electrical conductivity, and mechanical strength of less than 7-mol%-Sc2O3-doped zirconia ceramics fabricated by comparatively low-temperature sintering at 1200–1300°C for 1 h were investigated. Zirconia ceramics having a uniform microstructure (grain size < 0.5 μm) stabilized with 6 mol% Sc2O3 showed high electrical conductivity (0.15 S/cm at 1000°C) and high fracture strength (660 MPa). With the increase of Sc2O3 content from 3.5 to 7 mol%, the grain size, fracture strength, and electrical conductivity at 1000°C changed from 0.2 to 0.5 μm, 970 to 440 MPa, and 0.07 to >0.2 S/cm, respectively. Sc2O3-doped zirconia polycrystals with high fracture strength and high electrical conductivity are promising candidates for the electrolyte material of solid oxide fuel cells.  相似文献   

9.
The effect of Y2O3 content on the flexure strength of melt-grown Al2O3–ZrO2 eutectics was studied in a temperature range of 25°–1427°C. The processing conditions were carefully controlled to obtain a constant microstructure independent of Y2O3 content. The rod microstructure was made up of alternating bands of fine and coarse dispersions of irregular ZrO2 platelets oriented along the growth axis and embedded in the continuous Al2O3 matrix. The highest flexure strength at ambient temperature was found in the material with 3 mol% Y2O3 in relation to ZrO2(Y2O3). Higher Y2O3 content did not substantially modify the mechanical response; however, materials with 0.5 mol% presented a significant degradation in the flexure strength because of the presence of large defects. They were nucleated at the Al2O3–ZrO2 interface during the martensitic transformation of ZrO2 on cooling and propagated into the Al2O3 matrix driven by the tensile residual stresses generated by the transformation. The material with 3 mol% Y2O3 retained 80% of the flexure strength at 1427°C, whereas the mechanical properties of the eutectic with 0.5 mol% Y2O3 dropped rapidly with temperature as a result of extensive microcracking.  相似文献   

10.
The elastic moduli and fracture toughnesses of a series of PbO-ZnO-B2O3 glasses were measured for different PbO/ZnO ratios and for B2O3 contents from 30 to 70 mol%. Substituting ZnO for PbO increased both the elastic modulus and fracture toughness at all B2O3 levels with the fracture toughness being related to the elastic modulus. Structural effects on these properties are discussed.  相似文献   

11.
The average grain size of ZrO2(+Y, o,) materials sintered at 1400°C was observed to depend significantly on the Y2O3 content. The average grain size decreased by a factor of 4 to 5 for Y2O3 contents between 0.8 and 1.4 mol% and increased at Y2O3 contents of 6.6 mol%. Grain growth control by a second phase is the concept used to interpret these data; compositions with a small grain size lie within the two-phase tetragonal + cubic phase field, and the size of the tetragonal grains is believed to be controlled by the cubic grains. This interpretation suggests that the Y2O3-rich boundary of the two-phase field lies between 0.8 and 1.4 mol% Y2O3. Transformation toughened materials fabricated in this binary system must have a composition that lies within the two-phase field to obtain the small grain size required, in part, to retain the tetragonal toughening agent.  相似文献   

12.
In the system Bi2O3-SiO2-GeO2, good glasses can be formed only from limited compositional regions consisting of 2 narrow strips along the lines x Bi2O3-(100-:t) GeO2 ( x ≤40) and 40Bi2O3 y SiO2 (60- y )GeO2 (mol%); such glass is dark brown. Compositions from a large region (Bi2O3 content <40 mol%) showed immiscibility. In the binary system Bi2O3-GeO2, density and refractive index vary linearly with composition (mol%). Negative deviations of molar volume from ideality suggest that the coordination of a significant number of Ge ions is changing from 4-fold to 6-fold. Thermal expansion and electrical resistivity data are also reported.  相似文献   

13.
Low-temperature-sinterable (Zr0.8Sn0.2)TiO4 powders were prepared using 3 mol% Zn(NO3)2 additive and then compared with powders prepared using 3 mol% ZnO additive and no additives. Sintering at 1200°C for 2 h produced a dielectric ceramic with ρ= 98.6% of theoretical density (TD), ɛr= 38.4, Q × f (GHz) = 42000, and τ f =−1 ppm/°C. Sintering at 1250°C resulted in an excellent dielectric with ρ= 99% of TD, epsilonr= 40.9, Q × f (GHz) = 49000, and τ f =−2 ppm/°C. Scanning electron microscopy showed a microstructure with grains measuring 0.5 to 1 μm, and transmission electron microscopy revealed secondary phase in the grain boundaries.  相似文献   

14.
Bi2O3 was added to a nominal composition of Zn1.8SiO3.8 (ZS) ceramics to decrease their sintering temperature. When the Bi2O3 content was <8.0 mol%, a porous microstructure with Bi4(SiO4)3 and SiO2 second phases was developed in the specimen sintered at 885°C. However, when the Bi2O3 content exceeded 8.0 mol%, a liquid phase, which formed during sintering at temperatures below 900°C, assisted the densification of the ZS ceramics. Good microwave dielectric properties of Q × f =12,600 GHz, ɛr=7.6, and τf=−22 ppm/°C were obtained from the specimen with 8.0 mol% Bi2O3 sintered at 885°C for 2 h.  相似文献   

15.
Diffusion of molten Bi2O3 into the grain boundaries of sintered, alumina-doped (0.23 and 0.7 mol%) ZnO pellets resulted in varistors with breakdown voltages in the 3–5 V range and nonlinearity coefficients of 10–24. The varistors were fabricated by spreading a thin layer of Bi2O3 powder on the surface of ZnO pellets and heating the combination to various temperatures (860–1155°C) and different times. The highest nonlinearity coefficients (20–24) and lowest breakdown voltages (3–5 V) were recorded in samples annealed at 860°C for 35 min. Longer annealing times and/or higher temperatures resulted in progressively higher breakdown voltages. Eventually the devices became insulating, which was attributed to the formation of an insulating Bi2O3 layer between the grains. Separate wetting experiments have shown that the penetration of Bi2O3 into ZnO grain boundaries was a strong function of alumina doping —the penetration rate was decreased by a factor of 5–7 as the ZnO was doped with as little as 0.2 mol% alumina. It is this slowing down of the penetration of the ZnO grain boundaries that is believed to be critical in the development of the low breakdown voltages observed.  相似文献   

16.
Current ( I )-voltage ( V ) characteristics of porous ZnO varistors with different Bi2O3 content have been investigated in air as well as in H2-air mixtures in the temperature range room temperature (RT)-600°C. The I-V characteristics measured at RT remained unchanged in the presence of H2, but the breakdown voltage clearly shifted to a lower electric field in the temperature range 400–600°C. The breakdown voltage decreased with increasing H2 concentration in air. The optimum amount of Bi2O3 for the largest decrease was found to be 1.0 mol%. Thus, ZnO varistors can be used as a new type of H2 sensor. The results presented in this study also suggest the important role of excess oxygen ions existing at the ZnO-ZnO grain boundaries in developing the Schottky barrier as well as in the H2-sensing mechanism of the varistors.  相似文献   

17.
The dc conductivities (σ) of V2O5-P2O5 glasses containing up to 30 mol% TiO2 were measured at T=100° to ∼10°C below the glass-transition temperature. Dielectric constants from 30 to 106 Hz, densities, and the fraction of reduced V ion were measured at room temperature. The conduction mechanism was considered to be small polaron hopping between V ions, as previously reported for V2O5-P2O5 glass. The temperature dependence of σ was exponential with σ = σ0 exp(-W/kT ) in the high-temperature range. When part of the P2O5 was replaced by TiO2,σ increased and W decreased. The hopping energy depended on the reciprocal dielectric constant which, in this case, increased with increasing TiO2 content.  相似文献   

18.
The modification of the densification behavior and the grain-growth characteristics of the microwave-sintered ZnO materials, caused by the incorporation of V2O5 additives, have been systematically studied. Generally, the addition of V2O5 markedly enhances the densification rate, such that a density as high as 97.9% of the theoretical density and a grain size as large as 10 µm can be attained for a sintering temperature as low as 800°C and a soaking time as short as 10 min. Increasing the sintering temperature or soaking time does not significantly change the sintered density of the ZnO-V2O5 materials but it does monotonously increase their grain size. Varying the proportion of V2O5 in the range of 0.2-1.0 mol% does not pronouncedly modify such behavior. The leakage current density ( J L) of these high-density and uniform-granular-structure samples is still large, which is amended by the incorporation of 0.3 mol% of Mn3O4 in the ZnO materials, in addition to 0.5 mol% of the V2O5 additives. Samples that are obtained using such a method possess good nonohmic characteristics (α= 23.5) and a low leakage current density ( J L= 2.4 10-6 A/cm2).  相似文献   

19.
Effects of excess Bi2O3 content on formation of (Bi3.15Nd0.85)Ti3O12 (BNT) films deposited by RF sputtering were investigated. The microstructures and electrical properties of BNT thin films are strongly dependent on the excess Bi2O3 content and post-sputtering annealing temperature, as examined by XRD, SEM, and P – E hysteresis loops. A small amount of excess bismuth improves the crystallinity and therefore polarization of BNT films, while too much excess bismuth leads to a reduction in polarization and an increase in coercive field. P – E loops of well-established squareness were observed for the BNT films derived from a moderate amount of Bi2O3 excess (5 mol%), where a remanent polarization 2P r of 25.2 μC/cm2 and 2E c of 161.5 kV/cm were shown. A similar change in dielectric constant with increasing excess Bi2O3 content was also observed, with the highest dielectric constant of 304.1 being measured for the BNT film derived from 5 mol% excess Bi2O3.  相似文献   

20.
The formation of a solid solution between cubic perovskne-type KUO3 and pseudocubic BaUO3 was investigated. The reaction begins at 550°C, and the solubility of KUO3 reaches more than 30 mol% KUO3 in BaUO3 at 750°C. The region in which a single-phase solid solution exists was determined. The variation of the lattice parameter of the reacted samples was caused by solid solution formation and by oxygen absorption. The electrical conductivities of the samples varied with composition and showed a distinct maximum. The activation energy for electric conduction was very low compared to that for UOz+x, or U3O8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号