首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C60 fullerene peapods and double-walled carbon nanotubes (DWCNTs) containing highly 13C enriched C60 and inner tubes, respectively, are studied using Raman spectroscopy and in situ Raman spectroelectrochemistry in order to follow the influence of 13C enrichment on the vibrational pattern of these carbon nanostructures. The Raman response of 13C60 after encapsulation in fullerene peapods differs from that of isotope-natural species, (Nat)C60. The Raman A(g)(2) mode of encapsulated 13C60 is upshifted in frequency compared to that of the (Nat)C60 peapods with the same filling factor. The chemical doping of 13C60 peapods (peapod = C(60)@SWCNT) with K-vapor leads to the downshift of the A(g)(2) mode, similar to the case of (Nat)C60 peapods. The 13C60 peapods were successfully transformed into DWCNTs, which confirms high filling of single-walled (SW) CNTs with 13C60. The DWCNTs exhibited distinctly downshifted G and D Raman modes for inner tubes, which proves that only inner tubes were enriched by 13C. The in situ Raman spectroelectrochemistry of (Nat)C60 exhibits strong anodic enhancement, while for 13C60 peapods the enhancement is only weak. On the other hand, the electrochemical charging of the inner-tube-labeled DWCNTs (13C(i)-DWCNTs) followed the behavior of ordinary (Nat)C(i)-DWCNTs as indicated by in situ Raman spectroelectrochemistry. In addition, the spectroelectrochemical behavior of the G mode of inner tubes in 13C(i)-DWCNTs is followed from the start of the electrochemical doping, which was not feasible for (Nat)C(i)-DWCNTs.  相似文献   

2.
Encapsulating fullerenes, magnetic fullerenes, 13C isotope enriched fullerenes, and organic solvents inside SWCNTs enables to yield unprecedented insight into their electronic, optical, and interfacial properties and to study SWCNT growth. In addition to customary methods of their studies such as e.g., optical absorption or Raman spectroscopy, these efforts enables to employ electron spin resonance (ESR) and nuclear magnetic resonance (NMR) spectroscopy. Encapsulated C60 fullerenes are transformed to inner tubes by a high temperature annealing. The diameter distribution of the inner tubes follow that of the outer ones and their unique, low defect concentration makes them an ideal model system for high resolution and energy dependent Raman studies. The observation of Raman modes of individual inner-outer tube pairs allows to measure the inner-outer tube interaction strength that is also well described theoretically. Reversible closing and opening of SWCNT can be studied in a diameter selective manner by encapsulating C60 and transforming it to an inner tube. The growth of inner tubes can be achieved from 13C enriched encapsulated organic solvents, which shows that the geometry of the fullerene does not play a particular role in the inner tube growth as it was originally thought. In addition, it opens new perspectives to explore the in-the-tube chemistry. Growth of inner tubes from 13C enriched fullerenes provides a unique isotope engineered heteronuclear system, where the outer tubes contain natural carbon and the inner walls are controllably 13C isotope enriched. The material enables to identify the vibrational modes of inner tubes which otherwise strongly overlap with the outer tube modes. The 13C NMR signal of the material has an unprecedented specificity for the small diameter SWCNTs. Temperature and field dependent 13C T1 studies show a uniform metallic-like electronic state for all inner tubes rather than distributed metallic and isolating behavior. A low energy, 3 meV gap is observed that is tentatively assigned to a long sought Peierls transition in the small diameter SWCNTs. Encapsulating magnetic fullerenes, such as N@C60 and C59N opens the way for local probe ESR studies of the electronic properties of the SWCNTs.  相似文献   

3.
In this paper, we discussed recent studies done in our laboratories with a floating catalyst chemical vapor deposition (CVD) method. We can grow single- or double-walled carbon nanotubes (SWNTs/DWNTs) with different kinds of catalysts. Single-walled carbon nanotubes without amorphous carbon coating were prepared by thermally decomposing acetylene (C2H2) at the temperature range of 750–1200 °C with ferrocene as catalyst. While with sulfur promoted ferrocene catalyst, double-walled carbon nanotubes were mass-produced by pyrolizing C2H2 at the temperature range of 900–1100 °C. Furthermore, tunable growth of DWNTs with different diameter was achieved in our experiment. It is found that DWNTs produced at lower carbon partial pressure have much smaller inner tubes, even DWNTs with the smallest inner diameter of 0.4 nm was found in here. As convenient and effective tool, radial breathing mode (RBM) of Raman scattering technique can be used to distinguish SWNTs from DWNTs. In further studies of Raman scattering with DWNTs, the possible match of the inner tubes and the outer tubes according to the RBM bands was assigned, and different chirality types were discussed according to the diameter and chirality dependence of resonant Raman vibration. We also investigated the temperature-dependent frequency shift of resonant Raman spectra of DWNTs in the range of 78–650 K. We found that different RBM peaks, which are relative to different tube diameters, have different temperature coefficient of frequency shift, and the larger diameter carbon nanotubes have more RBM frequency downshift with increasing temperature. It is ascribed to the RBM frequency variation to the temperature dependence of the stretching force constant of C–C bond. Besides, Polarized Raman spectra were preformed on well-aligned SWNTs structure fabricated through post-growth method and found that the angular dependence of Raman intensity is consistent well with the predictions of the resonance Raman theory.  相似文献   

4.
We perform transmission electron microscopy, electron diffraction, and Raman scattering experiments on an individual suspended double-walled carbon nanotube (DWCNT). The first two techniques allow the unambiguous determination of the DWCNT structure: (12,8)@(16,14). However, the low-frequency features in the Raman spectra cannot be connected to the derived layer diameters d by means of the 1/d power law, widely used for the diameter dependence of the radial-breathing mode of single-walled nanotubes. We discuss this disagreement in terms of mechanical coupling between the layers of the DWCNT, which results in collective vibrational modes. Theoretical predictions for the breathing-like modes of the DWCNT, originating from the radial-breathing modes of the layers, are in a very good agreement with the observed Raman spectra. Moreover, the mechanical coupling qualitatively explains the observation of Raman lines of breathing-like modes, whenever only one of the layers is in resonance with the laser energy.  相似文献   

5.
The interaction of double wall carbon nanotubes (DWCNTs) and the conducting polymer poly(3,4-ethylenedioxythiphene)/polystyrenesulfonate (PEDOT/PSS) was studied by in-situ Raman spectroelectrochemistry. The mixing of DWCNTs with PEDOT/PSS caused a partial doping of the outer tube of DWCNTs, which was indicated by the relative change of the Raman intensity of the DWCNTs features. On the other hand, the bands corresponding to inner tubes of DWCNTs and to the polymer were almost untouched by assembling both species into a composite. The in-situ Raman spectroelectrochemical experiments have shown that the changes in electronic structure of inner tubes of DWCNTs embedded in PEDOT/PSS matrix are dependent on the doping level. While at the low doping level of the composite, the Raman features of inner tubes of DWCNTs do not change significantly, at high doping level they reflect the changes caused by the applied electrochemical potential similar to those observed in the polymer-free DWCNTs.  相似文献   

6.
Field-effect transistors have been fabricated using single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs), and their electrical transport properties have been studied comparatively. While a semiconducting SWCNT exhibits better field-effect characteristics than a DWCNT counterpart, the DWCNT shows more complicated response to external gate modulation. Depending on the nature of the two shells of a DWCNT, i.e., whether the shell is semiconducting (S) or metallic (M), a DWCNT device can be described as either S-S, or S-M, or M-S, or M-M. It was found that the S-S and M-M or M-S devices show similar field-effect characteristics to those found in SWCNT devices. But for S-M DWCNT devices, distinct field-effect characteristic was found and attributed to the combined effects of intershell interactions and screening by free carriers of the inner metallic shell. The S-M DWCNT devices thus provide a perfect system for studying the important intershell interaction, and information on the effect of this interaction on the electrical properties of a multi-walled carbon nanotube can be obtained by a comparative study of S-M DWCNT and S-SWCNT devices.  相似文献   

7.
We report a facile chemical route for stabilizing a dispersion of carboxylated single-walled carbon nanotubes (SWCNTs) in a ZnO sol. The dispersion is stabilized via capping of the carboxyl groups on the SWCNT surface by a titania layer, which was confirmed by Fourier transform infrared spectroscopy and transmission electron microscopy. We also demonstrate that the conductivity of the films prepared from the SWCNT/TiO(x)/ZnO sol is dramatically enhanced by thermal treatment and that the thermal stability of the hybridized films with the ZnO sol is notably improved relative to that of a pristine SWCNT film. The structural and chemical changes of the fabricated films were characterized by Raman spectroscopy. As one application, it was presented that thermally treated SWCNT/TiO(x)/ZnO hybrid thin film sensors showed hydrogen sensing characteristics even at room temperature.  相似文献   

8.
Nitrogen doping in carbon nanotubes   总被引:2,自引:0,他引:2  
Nitrogen doping of single and multi-walled carbon nanotubes is of great interest both fundamentally, to explore the effect of dopants on quasi-1D electrical conductors, and for applications such as field emission tips, lithium storage, composites and nanoelectronic devices. We present an extensive review of the current state of the art in nitrogen doping of carbon nanotubes, including synthesis techniques, and comparison with nitrogen doped carbon thin films and azofullerenes. Nitrogen doping significantly alters nanotube morphology, leading to compartmentalised 'bamboo' nanotube structures. We review spectroscopic studies of nitrogen dopants using techniques such as X-ray photoemission spectroscopy, electron energy loss spectroscopy and Raman studies, and associated theoretical models. We discuss the role of nanotube curvature and chirality (notably whether the nanotubes are metallic or semiconducting), and the effect of doping on nanotube surface chemistry. Finally we review the effect of nitrogen on the transport properties of carbon nanotubes, notably its ability to induce negative differential resistance in semiconducting tubes.  相似文献   

9.
Nanostructures resulting from the incorporation of silver iodide into single-wall carbon nanotubes (SWCNTs) of various diameters have been studied using molecular dynamics simulation. The results indicate the formation of single-wall silver iodide nanotubes when the SWCNT diameter is within 14.2 Å, whereas thicker carbon tubes contain, in addition, an axial “filament” of silver and iodide ions. AgI nanotubes in SWCNTs typically have a hexagonal structure (with the ions in trigonal coordination).  相似文献   

10.
Here we report Raman scattering studies of ropes of Single-walled carbon nanotubes (SWNTs) grown by a high CO pressure process. Five samples from five different batches were studied as a function of excitation wavelength. Three of these samples exhibited Raman spectra similar to that found for SWNTs made by pulsed laser vaporization of arc-discharge methods. The other two samples were found by Raman scattering to contain a significant fraction of tubes with diameter < 1.0 nm. These samples exhibited unusual spectra that, however, can be well understood within the existing models for the electronic and phononic states in SWNTs. Spectra recorded with 1064 nm for the sample having a significant fraction of smaller diameter tubes shows strong modes present between 500 and 1200 cm-1. We suggest these modes arise due to the enhancement of Raman cross-section for small diameter tubes.  相似文献   

11.
The selective excitation of fullerenes encapsulated in single-walled carbon nanotubes (SWCNTs) is carried out by irradiating them using a UV laser, the wavelength of which corresponds exactly to their maximum of absorption. Under such conditions, fullerenes strongly absorb the laser energy, open, and break, while the containing SWCNT merely acts as both a nanoreactor and a mold which is only weakly heated by the laser. The containing tube confines the fullerene fragments, promotes their reconstruction into an inner tube, and protects them from air oxidation. This leads to the overall formation of double-walled carbon nanotubes (DWCNTs). The transformation is found to strongly depend on the laser irradiance and dose. This proves that the related mechanism is a multiphoton photolysis, different from the previous heat-induced transformation attempts found in the literature, whether the heat is produced by means of a thermostat, infrared laser, or nonresonant UV laser. The actual peapod-to-DWCNT transformation is monitored by Raman spectroscopy and high-resolution transmission electron microscopy.  相似文献   

12.
We show that the phonon coupling to the electronic system in individual metallic single-walled carbon nanotubes is not due to coupling to low-energy plasmons. The evidence stems from the measured Raman-Stokes G-mode, which for metallic and semiconducting tubes could be fitted well by the superposition of only two Lorentzian lines associated with vibrational modes along the nanotube axis and the nanotube circumference. In the case of metallic tubes the lower-energy G mode is significantly broadened, however maintaining the Lorentzian line shape, in contrast to the theoretically expected asymmetric Breit-Wigner-Fano line shape from phonon-plasmon coupling. The results were obtained by studying 25 individual metallic and semiconducting single-walled carbon nanotubes with atomic force microscopy, electron transport measurements, and resonant Raman spectroscopy.  相似文献   

13.
The precise atomic structure and relative atomic conformation of the individual carbon nanotubes comprising a double wall carbon nanotube (DWCNT) is determined. The DWCNTs are imaged using an aberration corrected high resolution transmission electron microscope (HRTEM) operating at 80 kV. Using processing in Fourier space images of the inner and outer tube of a double‐wall carbon nanotube (DWCNT) are analysed. Comparisons of these results with simulated HRTEM images enable the chiral indices and relative atomic correlation of the component tubes of non‐commensurate DWCNTs to be determined. This technique is used to reveal the presence of a defect in the inner tube of a (6, 6)@(18, 2) DWCNT.  相似文献   

14.
Double-walled carbon nanotubes (DWCNTs) with high graphitization have been synthesized by hydrogen arc discharge. The obtained DWCNTs have a narrow distribution of diameters of both the inner and outer tubes, and more than half of the DWCNTs have inner diameters in the range 0.6–1.0 nm. Field electron emission from a DWCNT cathode to an anode has been measured, and the emission current density of DWCNTs reached 1 A/cm2 at an applied field of about 4.3 V/μm. After high-temperature treatment of DWCNTs, long linear carbon chains (C-chains) can be grown inside the ultra-thin DWCNTs to form a novel C-chain@DWCNT nanostructure, showing that these ultra-thin DWCNTs are an appropriate nanocontainer for preparing truly one-dimensional nanostructures with one-atom-diameter.   相似文献   

15.
A detailed analysis of the in situ Raman spectroelectrochemical behavior of individual semiconducting single-walled carbon nanotubes (SWCNTs) is presented. Special attention has been paid to the development of the tangential (TG) mode frequency, which shifts when the externally applied potential Ve is shifted away from Ve=0. The magnitude and direction (upshift or downshift) of the tangential mode band has been found to be dependent on the diameter of the semiconducting tubes. For negative charging, the small-diameter tubes exhibit a downshift while the large-diameter tubes exhibit an upshift. This behavior is explained by a competition between two effects which cause opposite shifts in the TG mode frequency during negative charging: a phonon renormalization effect and a C-C bond weakening during the charging process. Positive charging always causes an upshift of the TG mode frequency. However, the magnitude of the upshift is dependent on the tube diameter.  相似文献   

16.
This is the first study to investigate the electrochemical Li ion insertion/deinsertion property of C60 encapsulated single-walled carbon nanotubes (SWCNTs) (C60-peapods). It was found that the reversible Li ion storage capacity of the C60-peapod per unit weight is about 1.2 times greater than that of the empty tubes. This suggests that one peapod tube can store almost 1.7 times more reversible Li ions compared to one empty SWCNT tube.  相似文献   

17.
This paper studies elastic buckling of individual multiwall carbon nanotubes under radial pressure. The analysis is based on a multiple-elastic-shell model in which each of the concentric tubes of a multiwall carbon nanotube is described as an individual elastic shell. According to their radius-to-thickness ratios, the multiwall carbon nanotubes discussed here are classified into three types: thin, thick, and (almost) solid. The critical pressure for elastic buckling is calculated for examples of all three types. It is found that a thin N-wall nanotube (defined by a radius-to-thickness ratio larger than 4) is approximately equivalent to a single-layer elastic shell whose effective bending stiffness and thickness are N times the effective bending stiffness and thickness of single-wall carbon nanotubes. Based on this result, an approximate method is suggested for replacing the problematic multiwall nanotube of many layers with a multilayer elastic shell of fewer layers. In particular, the critical pressure predicted by the present model is in good agreement with known experimental results.  相似文献   

18.
19.
In this work the internal channels of the single-walled carbon nanotubes (SWCNTs) were filled with cadmium chloride, cadmium bromide, and cadmium iodide by a capillary method using melts of these salts. The influence of incorporated chemical compounds on the electronic properties of the carbon nanotubes was investigated by optical absorption spectroscopy, Raman spectroscopy, near edge X-ray absorption fine structure spectroscopy, and X-ray photoelectron spectroscopy. It was found that there is the chemical bonding between carbon atoms of nanotube walls and metal atoms of encapsulated CdX2 nanocrystals. The obtained data testify acceptor doping effect of cadmium halogenides incorporated into the SWCNT channels, which is accompanied by the charge transfer from nanotube walls to introduced substances.  相似文献   

20.
Polyurethane (PU)-grafted carbon nanotubes were synthesized by the coupling of alkyne moiety decorated single walled carbon nanotube (SWCNT) with azide moiety containing PU using Cu(I) catalyzed Huisgen [3 + 2] cycloaddition click chemistry. The azide moiety containing poly(s-caprolactone)diol was synthesized by ring-opening polymerization and further used for PU synthesis. Alkyne-functionalizion of SWCNT was completed by the reaction of p-aminophenyl propargyl ether with SWCNT using a solvent free diazotization procedure. Nuclear magnetic resonance, Fourier transform infrared, and Raman spectroscopic measurements confirmed the functionalization of SWCNT. Scanning electron microscopy and transmission electron microscopy images showed an excellent dispersion of SWCNTs, and specially debundling of SWCNTs could be observed due to polymer assisted dispersion. A quantitative grafting was successfully achieved even at high content of functional groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号