首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Garden cress (Lepidium sativum L.) is an edible, underutilised herb, grown mainly for its seeds in India. Physicochemical properties, minor components (unsaponifiable matter, tocopherols, carotenoids), fatty acid composition and storage stability of garden cress seed oil (GCO) were studied. Cold press, solvent and supercritical CO2 extraction methods were employed to extract the oil. The total oil content of garden cress (GC) seeds was 21.54, 18.15 and 12.60% respectively by solvent, supercritical CO2 and cold press methods. The physical properties of GCO extracted by the above methods were similar in terms of refractive index, specific gravity and viscosity. However, cold pressed oil showed low PV and FFA compared to the oil extracted by other methods. α-Linolenic acid (34%) was the major fatty acid in GCO followed by oleic (22%), linoleic (11.8%), eicosanoic (12%), palmitic (10.1%) erucic (4.4%), arachidic (3.4%) and stearic acids (2.9%). Oleic acid (39.9%) and α-linolenic acid (42.1%) were the predominant fatty acids at the sn-2 position. The total tocopherol and carotenoid content of GCO was 327.42 and 1.0 μmol/100 g oil, respectively. The oil was stable up to 4 months at 4 °C. Tocopherol and BHT offered the least protection, while ascorbyl palmitate (200 ppm) offered the maximum protection to the oil, when subjected to the accelerated oxidative stability test. Thus GCO can be considered as a fairly stable oil with a high content of α-linolenic acid.  相似文献   

2.
Cephalocroton cordofanus, a perennial much-branched shrub, is dominant in the eastern and western states of Sudan. The seeds of C. cordofanus sesame, groundnut, and cotton were compared for their oil and protein content as well as for fatty acids, tocopherols, and sterols. Fatty acids and sterols were analyzed by GC while tocopherols were analyzed by HPLC. The oil of C. cordofanus showed low levels of saturated fatty acids in comparison with the other three oils. The other reported fatty acids of C. cordofanus were 8.60 % oleic, 17.2% linoleic, 64.2% vernolic, and 2.0% coronaric acids. Neutral lipids, glycolipids, and phospholipids of C. cordofanus oil accounted for 77.5, 14.4, and 8.1% of the total lipid fraction, respectively. The oil of C. cordofanus showed higher levels of tocopherols (113.53 mg/100 g) in comparison to sesame, groundnut, and cottonseed oils, with 64.74, 27.96, and 77.83 mg/100 g, respectively. The primary tocopherol of C. cordofanus was γ-tocopherol (106.21 mg/100 g), which amounted to 93.8% of the total tocopherols. β- and δ-tocopherol were present at levels below 5.0 mg/100 g. In comparison to sesame, groundnut, and cottonseed oils, C. cordofanus oil contains more (304.4 mg/100 g) total sterols than ground nut (294.0 mg/100 g), but less than sesame (774.9 mg/100 g) and cotton seed (492.4) oils. Due to its high level of epoxy fatty acids, C. cordofanus oil is used for industrial rather than edible applications.  相似文献   

3.
Azcan N  Kara M  Demirci B  Başer KH 《Lipids》2004,39(5):487-489
Seed oils of Origanum onites L. from the Antalya and Mugla regions and O. vulgare L. from the Kirklareli region of Turkey were extracted with hexane in a Soxhlet apparatus. The oil yields were 14.1–20.0 and 18.5%, respectively. FA compositions of the seed oils were determined by GC and GC/MS. Twenty FA were identified in both O. onites and O. vulgare seeds. The major FA of both species were linolenic (56.3–57.0%; 61.8%), linoleic (21.5–21.7%; 18.8%), oleic (8.7–8.9%; 5.9%), palmitic (5.9–6.5%; 5.5%), stearic (2.1–2.4%; 2.1%), and (Z)-11-octadecenoic (0.6–0.8%; 0.5%), respectively.  相似文献   

4.
The objective of this study was to investigate and compare fatty acids, tocopherols and sterols of kenaf seed oil extracted by supercritical carbon dioxide and traditional solvent methods. Fatty acids, tocopherols and sterols were determined in the extracted oils as functions of the pressure (400 bar, 600 bar), temperature (40 °C, 80 °C) and CO2 flow rate (25 g/min) using a 1-L extraction vessel. Gas chromatography was used to characterize fatty acids and sterols of the obtained oils while tocopherols were quantified by HPLC. No differences were found in the fatty acid compositions of the various oil extracts and the main components were found to be linoleic (38%), oleic (35%), palmitic (20%) and stearic acid (3%). Extraction of tocopherols using high pressure (600 bar/40 °C, 600 bar/80 °C) gave higher total tocopherols (88.20 and 85.57 mg/100 g oil, respectively) when compared with hexane extraction which gave yield of 62.38 mg/100 g oil. Extraction of kenaf seed oil using supercritical fluid extraction at high temperature (80 °C) gave higher amounts of sterols when compared with hexane extraction.  相似文献   

5.
Caesalpinia bonducella is an oilseed that is indigenous to Pakistan. The hexane-extracted oil content from the seed kernel was 17.3 ± 1.0% DM (dry matter). The proximate analysis of C. bonducella seed estimated protein, fiber and ash contents to be 20.8 ± 1.4, 5.3 ± 1.0 and 4.6 ± 0.8%, respectively. Trace metals were determined comparable to commonly consumed legume seeds. α-Tocopherol was the predominant tocopherol ranging from 345.10 to 460.21 mg/kg of oil, followed by γ- and δ-tocopherol. The major sterols were β-sitosterol, stigmasterol, campesterol, Δ5-avenasterol, Δ7-stigmastenol and Δ7 avenasterol. The kernel oil was found to contain a high level of linoleic acid (72.7 ± 1.0%) followed by oleic, stearic and palmitic acids. The high percentage of linoleic acid revealed that this oil is a potential source for the manufacture of cosmetics, paints, varnishes, soaps, liquid soaps and other products including biodiesel. These investigations suggest that C. bonducella oil is potentially an important dietary source of essential fatty acids and protein which could be employed for edible and commercial applications in various industries of Pakistan.  相似文献   

6.
The physicochemical properties of crude Nigella seed (Nigella sativa L.) oil which was extracted using Soxhlet, Modified Bligh–Dyer and Hexane extraction methods were determined. The effect of different extraction methods which includes different parameters, such as temperature, time and solvent on the extraction yield and the physicochemical properties were investigated. The experimental results showed that temperature, different solvents and extraction time had the most significant effect on the yield of the Nigella oil extracts. The fatty acid (FA) compositions of Nigella seed oil were further analyzed by gas chromatography to compare the extraction methods. The C16:0, C18:1 and C18:2 have been identified to be the dominant fatty acids in the Nigella seed oils. However, the main triacylglycerol (TAG) was LLL followed by OLL and PLL. The FA and TAG content showed that the composition of the Nigella seed oil extracted by different methods was mostly similar, whereas relative concentration of the identified compounds were apparently different according to the extraction methods. The melting and crystallization temperatures of the oil extracted by Soxhlet were −2.54 and −55.76 °C, respectively. The general characteristics of the Nigella seed oil obtained by different extraction methods were further compared. Where the Soxhlet extraction method was considered to be the optimum process for extracting Nigella seed oil with a higher quality with respect to the other two processes.  相似文献   

7.
The seeds of cultivated Hibiscus spp. were extracted with supercritical carbon dioxide, and the resulting extracts were analyzed to identify the major TG components as the corresponding FAME. The seed oils were composed predominantly of oleic and linoleic FA (69.6–83.4%) with lesser amounts of palmitic acid (14.8–27.0%). Minor amounts of C14, C18, and C20 saturated FA were also detected. The oil content of the seeds was determined to be between 11.8 and 22.1 wt% for hybrid varieties and between 8.9 and 29.5 wt% for the native species from which the hybrid varieties were developed. The protein content of the defatted seed meal averaged 20% for the hybrid varieties. The composition of the extracted hibiscus seed oils suggests potential edible applications.  相似文献   

8.
Avato P  Pesante MA  Fanizzi FP  Santos CA 《Lipids》2003,38(7):773-780
The chemical composition of the oil extracted from the seeds of Paullinia cupana var. sorbilis (Mart.) Ducke (syn. P. sorbilis) was investigated. Cyanolipids constituted 3% of the total oil from guaraná seeds, whereas acylglycerols accounted for 28%. 1H and 13C NMR analyses indicated that type 1 cyanolipids (1-cyano-2-hydroxymethylprop-2-ene-1-ol diesters) are present in the oil from P. cupana. GC and GC-MS analysis showed that cis-11-octadecenoic (cis-vaccenic acid) and cis-11-eicosenoic acids were the main FA (30.4 and 38.7%) esterified to the nitrile group. Paullinic acid (7.0%) was also an abundant component. Oleic acid (37.4%) was the dominant fatty acyl chain in the acylglycerols.  相似文献   

9.
Jatropha curcas seeds are rich in oil (28–32%), which can be converted to high quality biodiesel. The oil is non-edible due to the presence of toxic compounds, namely, phorbol esters (PEs). PEs have a number of agricultural/medicinal/pharmaceutical applications and hence their recovery generates a value added co-product towards the biodiesel production chain. This study aims to assess the effects of PE extraction on quality of both the residual oil and the biodiesel production from it. Two Approaches (1, use of an Ultra-turrax; and 2, use of a magnetic stirrer) were used with an effective treatment time of 2 and 5 min, resulting in 80 and 78% extraction of PEs, respectively. The phosphorus content was reduced by 70.2 and 75.8%, free fatty acids by 55.3 and 55.6%, and the fatty acid composition did not change in the residual oils. The peroxide value increased from 2.69 (untreated oil) to 3.01 and 3.49 mequiv O2/kg in the residual oils following Approach 1 and Approach 2, respectively. The biodiesel prepared from both residual oils met European (EN 14214:2008) and American biodiesel standard (ASTM D6751-09) specifications. Oxidative stability indices for both the biodiesels were well within the permitted limit. It is concluded that PEs could be isolated in active forms for various applications by either of the two methods with a high yield and the residual oil can be processed to produce high quality biodiesel.  相似文献   

10.
Laverroux S  Glasser F  Gillet M  Joly C  Doreau M 《Lipids》2011,46(9):843-850
In ruminants, cis and trans C18:1 isomers are intermediates of fatty acid transformations in the rumen and their relative amounts shape the nutritional quality of ruminant products. However, their exact synthetic pathways are unclear and their proportions change with the forage:concentrate ratio in ruminant diets. This study traced the metabolism of vaccenic acid, the main trans C18:1 isomer found in the rumen, through the incubation of labeled vaccenic acid with mixed ruminal microbes adapted to different diets. [1-13C]trans-11 C18:1 was added to in vitro cultures with ruminal fluids of sheep fed either a forage or a concentrate diet. 13C enrichment in fatty acids was analyzed by gas-chromatography-mass spectrometry after 0, 5 and 24 h of incubation. 13C enrichment was found in stearic acid and in all cis and trans C18:1 isomers. Amounts of 13C found in fatty acids showed that 95% of vaccenic acid was saturated to stearic acid after 5 h of incubation with the concentrate diet, against 78% with the forage diet. We conclude that most vaccenic acid is saturated to stearic acid, but some is isomerized to all cis and trans C18:1 isomers, with probably more isomerization in sheep fed a forage diet.  相似文献   

11.
Coriander (Coriandrum sativum L.) seeds were harvested from the region of Korba (North-East Tunisia) in order to characterize their fatty acids, phytosterols, tocopherols and tocotrienols (tocols) profiles. Nine fatty acids, with petroselinic acid accounting for 76.6% of the total fatty acids, followed by linoleic, oleic and palmitic acids, accounting for 13.0, 5.4 and 3.4%, respectively, of the total fatty acids were identified. Neutral lipids (NLs) were mainly composed of triacylglycerols (98.4%). Polar lipids were mainly composed of phosphatidylcholine as the major phospholipid (PL) subclass, whereas digalactosyldiacylglycerol was the major galactolipid (GL). Total sterols content was estimated to be 36.93 mg/g oil. Stigmasterol accounted for 29.5% of the total sterols. Other representative sterols were β-sitosterol, Δ7-stigmasterol and Δ5, 24-stigmastadienol, which accounted for 24.8, 16.3 and 9.2%, respectively. Gamma-tocotrienol was the predominant tocol at 238.40 μg/g seed oil. This was equivalent to 72.8% of the total tocols followed by γ-tocopherol (8.06%) and α-tocopherol (7.6%).  相似文献   

12.
Interprovenance variation was examined in the composition of Moringa oleifera oilseeds from Pakistan. The hexane-extracted oil content of M. oleifera seeds harvested in the vicinity of the University of Agriculture, Faisalabad (Punjab, Pakistan), Bahauddin Zakariya University (Multan, Pakistan), and the University of Sindh, Jamshoro (Sindh, Pakistan), ranged from 33.23 to 40.90%. Protein, fiber, moisture, and ash contents were found to be 28.52–34.00, 6.52–7.50, 5.90–7.00, and 6.52–7.50%, respectively. The physical and chemical parameters of the extracted M. oleifera oils were as follows: iodine value, 67.20–71.00; refractive index (40°C), 1.4570–1.4637; density (24°C), 0.9012–0.9052 mg/mL; saponification value, 177.29–184.10; unsaponifiable matter, 0.60–0.83%; color (1-in. cell), 1.00–1.50 R+20.00–30.00Y; smoke point, 198–202°C; and acidity (% as oleic acid), 0.50–0.74. Tocopherols (α, γ, and δ) accounted for 114.50–140.42, 58.05–86.70, and 54.20–75.16 mg/kg, respectively, of the oils. The induction periods (Rancimat, 20 L/h, 120°C) of the crude oils were 9.64–10.66 h and were reduced to 8.29–9.10 h after degumming. Specific extinctions at 232 and 270 nm were 1.80–2.50 and 0.54–1.00, respectively. The major sterol fractions of the oils were campesterol (14.13–17.00%), stigmasterol (15.88–19.00%), β-sitosterol (45.30–53.20%), and ͤ5-avenasterol (8.84, 11.05%). The Moringa oils were found to contain high levels of oleic acid (up to 76.00%), followed by palmitic, stearic, behenic, and arachidic acids up to levels of 6.54, 6.00, 7.00, and 4.00%, respectively. Most of the parameters of M. oleifera oils indigenous to different agroclimatic regions of Pakistan were comparable to those of typical Moringa seed oils reported in the literature. The results of the present analytical study, compared with those for different vegetable oils, showed M. oleifera to be a potentially valuable oilseed crop.  相似文献   

13.
The seeds of Commiphora wightii (Arnott) Bhandari contain 9.8 ± 0.7% oil. The fatty acid composition and chemical properties of the extracted oil were determined. Gas liquid chromatography of the methyl esters of the fatty acids shows the presence of 46.62% saturated fatty acids and 51.40% unsaturated fatty acids. The fatty acid composition is as follows: capric acid 3.50%, myristic acid 14.51%, palmitic acid 6.68%, stearic acid 4.70%, arachidic acid 3.18%, behenic acid 14.05%, myristoleic acid 1.34%, palmitoleic acid 12.07%, oleic acid 14.15%, eicosenoic acid 0.11%, linoleic acid 22.34% and alpha linoleic acid 1.37%.  相似文献   

14.
The oil and meal from Monechma ciliatum (black mahlab) and Prunus mahaleb (white mahlab) seeds were characterized for their physicochemical properties. The oil content was found to be 30.95 and 13.15% in white and black mahlab seeds, respectively. The refractive indices of white mahlab oil (WMO) and black mahlab oil (BMO) were 1.475 and 1.470, and specific gravities were 0.8511 and 0.8167 g/cm3, respectively. Saponification values were 184.23 and 180.3 mg KOH/g, peroxide values were 2.54 and 4.43 meq/kg, and unsaponifiable matter was 0.92 and 0.66%, respectively. The major fatty acids were palmitic 4.5%, stearic 16.0%, oleic 47.3%, and linoleic 31.4% in BMO, while in WMO they were palmitic 5.7%, oleic 45.0%, and linoleic acid 47.0%. A moderate amount of tocopherols were found at 45.2 and 28.5 mg/100 g in BMO and WMO, respectively. Protein content was found to be 21% in black and 28% in white mahlab seeds. The total amount of amino acids in black and white mahlab seeds was found to be 783.3 and 1,223.2 mg/g N, respectively. The concentration (on ppm dry-weight basis) of major elements (Ca, K, and Mg) and of minor elements (Al, Pb Ni, Mn, Cu, Cr, Co, and Fe) was also determined in the meals.  相似文献   

15.
Oil extracted from the kernel of Sclerocarya birrea with different harvesting dates was studied in terms of the oil content, fatty acids, tocopherols, phenolic compounds and antimicrobial activity. A quantitative increase in the oil content was observed to reach 63.0% at the end of the last harvesting date. The percentage of total fatty acids had altered and palmitic acid content was found to be 16.8% at the first date of harvesting and dropping for the rest of the dates to reach 14.6% by the end of the harvesting process. In the same manner, stearic acid was found to be 15.2% at the first date and this dropped dramatically to reach 8.8% by the end of the harvesting, while oleic and linoleic acids increased from 58.9 and 4.3% to 67.3 and 5.9%, respectively. Alpha and gamma tocopherols decreased rapidly, whereas the δ-tocopherol and δ-tocotrienol were 4.8 and 4.9 mg/100 g, respectively at the beginning and had disappeared completely by the last harvesting date. Total phenolic and flavonoid content increased continuously through the different harvesting dates. Sclerocarya birrea kernel oil was effective in inhibiting the growth of three out of four bacterial strains tested. This inhibitory effect was less than that of the control.  相似文献   

16.
The following four methods were used to extract salmon oil from red salmon heads: RS1 involved a mixture of ground red salmon heads and water, no heat treatment, and centrifugation; RS2 involved ground red salmon heads (no water added), heat treatment, and centrifugation; RS3 involved a mixture of ground red salmon heads and water, heat treatment, and centrifugation; and RS4 involved ground red salmon heads, enzymatic hydrolysis, enzyme inactivation by heat and centrifugation. The four extracted oil samples were evaluated for chemical, thermal, and rheological physical properties. The RS4 process recovered significantly higher amounts of crude oil from red salmon heads than the other three extraction methods, while containing a higher % of free fatty acids and higher peroxide values than RS1, RS2, and RS3 oils. Oleic acid, eicosenoic acid, EPA, and DHA were the predominant fatty acids accounting for about 60% of all unsaturated fatty acids. The RS1, RS2, RS3, and RS4 extractions contained 9.3, 9.05, 9.35, and 9.45% of EPA and 8.8, 8.55, 9.0, and 9.1% of DHA in the oil, respectively. Weight losses of the oils increased with increasing temperatures between 200 and 500 °C. The % weight losses at 500 °C were 94.50, 94.58, 94.94, and 95.47% for RS2, RS1, RS3, and RS4, respectively. The apparent viscosities of all the oil samples decreased with the increases in the temperature. The RS1 extract was more viscous (P < 0.05) than those of RS2, RS3, and RS4 between 0 and 25 °C.  相似文献   

17.
The chemical characteristics of Pongamia pinnata seeds, focussing on proximate composition and the fatty acid profile of its oil, are presented. The proximate composition of P. pinnata seeds was: 3.8% ash, 9.7% sugar, 7.07% protein, 24% oil, 10.7% free amino acids, and 0.24% free fatty acids. The oil was extracted from seeds by use of different solvents and the highest yield (29%) was obtained by use of n-hexane. Monounsaturated and polyunsaturated fatty acids accounted for 63.3 and 22.9%, respectively, of the seed oil. Oleic acid was the major fatty acid but a substantial amount of erucic acid was also detected; this was not reported in previous studies. The level of erucic acid and the presence of toxic flavonoids, for example karanjin, pongapin, and pongaglabrin, render the oil inedible according to WHO recommendations. However, low levels of saturated and polyunsaturated fatty acids with desirable cetane number and iodine value suggest potential for application as a biodiesel fuel.  相似文献   

18.
The heartwood or root of Dalbergia odorifera T. Chen is an important traditional medicine in Asia. The aim of the present study was to evaluate the physicochemical properties, chemical composition and antioxidant activity of Dalbergia odorifera T. Chen seed oil. Oil, protein, carbohydrate, moisture, ash and total phenolic contents were found to be 12.96, 26.86, 42.58, 13.70, 3.90 and 5.55%, respectively. Free fatty acids, iodine number, peroxide value, saponification number and unsaponifiable matter were 1.66%, 106.53 g/100 g, 5.07 meq O2/Kg, 196.78 mg KOH/g and 1.70%, respectively. The oil showed high absorbance in the UV-B and UV-C ranges with potential for use as a broad spectrum UV protectant. The major fatty acids were linoleic acid (60.03%), oleic acid (17.48%) and palmitic acid (16.72%). The total tocopherol, total phenolics and β-carotene were 511.9, 351.1 and 62.2 mg/kg oil, respectively. In addition, the methanol extract of seed oil showed significant in vitro antioxidant activity in four assays including DPPH radical scavenging activity, reducing power, linoleic acid peroxidation inhibition and chelating activity. This study suggests that Dalbergia odorifera T. Chen seed oil has the potential to be used in new products in the functional food, cosmetic or pharmaceutical industries.  相似文献   

19.
Avato P  Rosito I  Papadia P  Fanizzi FP 《Lipids》2005,40(10):1051-1056
As a continuation of our study on plants of the Sapindaceae, the chemical composition of the oil extracted from seeds of Allophylus natalensis (Sonder) De Winter and of A. dregeanus (Sonder) De Winter has been investigated. The oil from both species contained approximately equal amounts of TAG and type I cyanolipids (CL), 1-cyano-2-hydroxymethylprop-2-en-1-oldiesters, with minor amounts of type III CL, 1-cyano-2-hydroxymethylprop-1-en-3-ol-diesters. Structural investigation of the oil components was accomplished by chemical, chromatographic (TLC, CC, GC, and GC-MS), and spectroscopic (IR, NMR) means. GC and GC-MS analysis showed that C20 FA were dominant in the CL components of the oil from the two species (44–80% vs. 21–26% in TAG), with cis-11-eicosenoic acid (36–46%) and cis 13-eicosenoic acid (paullinic acid, 23–37%) as the major esterified fatty acyl chains in A. natalensis and A. dregeanus, respectively. cis-Vaccenic acid was particularly abundant (11–31%) in the CL from A. dregeanus, whereas eicosanoic acid (10–22%) was also a major component of CL in both species.  相似文献   

20.
The fatty acid composition of the seed oil of 19 wild legume species from southern Spain was analyzed by gas chromatography. The main seed oil fatty acids ranged from C14:0 to C20:0. Among unsaturated fatty acids, the most abundant were linoleic, oleic and linolenic acids, except for Lathyrus angulatus, L. aphaca, L. clymenum, L. sphaericus and L. nigricans where C18:3 contents were higher than C18:1 contents. Palmitic acid was the most abundant saturated acid in studied species, ranging from 11.6% in Lathyrus sativus to 19.3% in Lens nigricans. All studied species showed higher amounts of total unsaturated fatty acids than saturated ones. Among studied species, the ω6/ω3 ratio was variable, ranging from 2.0% in L. nigricans to 13.8% in L. sativus, there being eight species in which the ω6/ω3 ratio was below 5. The fatty acids observed in these plants supports the use of these plants as a source of important dietary lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号