首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental observations1,9 indicate much poorer separations than are predicted by two dimensional theory. The purpose of this work is to explain these differences and suggest ways in which system performance can be improved.

The large effect of span-wise variation in axial velocity caused by side walls on hydrodynamic separations carried out in rectangular conduits with transverse flow is studied theoretically. As the aspect ratio increases, the steady stale retentivity (convection coefficient) approaches an asymptotic value obtained by neglecting side wall effects. However, the dispersion coefficient does not reduce to that for a flow with no side walls. Indeed, the asymptotic steady state dispersion coefficient is at least six times larger than that obtained by two dimensional theory which neglects side wall effects. As the transverse Peclet number increases, the effect of side walls on the dispersion coefficient becomes much larger.

The present three dimensional theoretical predictions, in contrast to two dimensional ones, are in good agreement with the experimental data of Caldwell, et al.9 and Kesner, et al.1 on electrical field flow fractionation. The results indicate that side wall effects may be of major importance in hydrodynamic chromatography even when the aspect ratio is 70 or more.

The adverse effect of side walls may be avoided by having the membranes enclose thin annular regions rather than rectangular conduits. This should improve performance significantly.  相似文献   

2.
The drag force and the mass transfer rate of a Newtonian fluid sphere, having mobile or rigid interface, moving in a power law fluid, are obtained by an approximate solution of equations of motion in the creeping flow regime. It is shown that both the drag and mass transfer increase as the flow index of the external fluid decreases.

The increase of drag due to the pseudoplastic anomaly is more significant at large viscosity ratio parameter. The results obtained are in good agreement with available experimental data and with those analyses based on variational principle when the non-Newtonian flow behavior is not very pronounced.

Also, the predicted mass transfer rates are in good agreement with the trends presented in the literature. Unlike in the case of drag force, the effect of the pseudoplastic anomaly on mass transfer rate is more pronounced for low values of the viscosity ratio parameter. The analysis was extended to include the case when the surface of the sphere was immobilized by surface-active contaminants.  相似文献   

3.
W. Blumberg 《Drying Technology》1994,12(6):1471-1484
When regarding the atmospheric contact drying of granular beds wetted with a liquid mixture, both the drying rate and the selectivity of the process, i.e. the change of moisture composition, are of interest. The batch drying of a free flowing ceramic substance, wetted with a 2-propanol-water mixture, is investigated in a rotary dryer with heated wall and air flow.

The theoretical analysis is based on physical models for heat and mass transfer, moisture migration and particle transport, which are presented in examples.

The experimental and theoretical results show that higher selectivities can be achieved by reducing the particle size because of the lower liquid-phase mass-transfer resistance. An increase of the rotational speed leads to a higher drying rate with slightly decreased selectivity if the particles are sufficiently small, since contact heat transfer is enhanced.  相似文献   

4.
The theory of gas absorption accompanied by fast pseudo-fast order reaction which considered dependences of diffusivity, kinetic constant and Henry's law constant on absolute temperature and ionic strength was used to obtain values of effective interfacial areas and mass transfer coefficients in gas and liquid phase.

Experimental measurement of carbon dioxide absorption from mixture with air was performed in a pilot-plant column with expanded metal sheet packing irrigated with sodium hydroxide solution.

Resulting liquid and gas-side mass transfer coefficients are compared with values obtained from physical Absorption measurement of carbon dioxide into water and with measurement of gas-side mass transfer coefficient for sulphur dioxide in the same column.

The differences between determined values are discussed.  相似文献   

5.
An approximate solution for the slow motion of an ensemble of spherical drops through a power law fluid is obtained using Happel's free-surface cell model. It is shown that the drag coefficient decreases with decrease of the flow index and that this reduction is more significant at low voidage and large viscosity ratio parameter. The effect of the pseudoplastic anomaly on the mass transfer rate is more pronounced at low voidage for large values of viscosity ratio parameter, unlike the case of a single spherical drop

The present analysis covers the whole range of values of viscosity ratio parameter from infinity (an assemblage of solid spheres) to zero (a swarm of bubbles) and reduces to the solutions for those cases already known

The results for the motion of an ensemble of spherical drops also provide the basis for proposing a tentative expression for the expansion of liquid-liquid fluidized bed at low Reynolds number.  相似文献   

6.
Compounded boundary-valued problem of the diffusion-filtering heat and mass transfer with arbitrary dimensions of the transfer potential vector was raised and solved based on the theory of short-term contact between the moist material and heat-transfer surface.

The boundary lines of the application of the short-term contact models were established.

The solution of the problem allows to select the directions of the intensification of the drying processes with short-term contact of the phases and to calculate various technological characteristics of the drying processes.  相似文献   

7.
Laminar, free convective flow through a vertical cylinder induced by the thermal and concentration buoyancy forces is investigated. The numerical studies involve development of a steady-state, two-dimensional heat and mass transfer model for the moist air core of the vertical tube. The stream function-vorticity method is employed to simplify the governing, coupled conservation equations which were then numerically solved by the successive over-relaxation (SOR) and alternating direction implicit ((ADI) methods.

A graphical correlation was found between dimensionless flow rate and dimensionless tube length as a function of the buoyancy force ratio N = Gr/Grc. Excellent agreement was obtained for the dimensionless flow rale results with those of Davis and Perona16 and Kageyama and Izumi13 for the case when only the-thermal buoyancy force is considered.

The combined buoyancy force from thermal and species diffusion provides larger local Nusselt Nu and local Sherwood Sh numbers relative to the case when just one buoyancy force is accounted for. Both local Nu and local Sh are seen to asymptotically approach a constant value as flow develops.  相似文献   

8.
《Drying Technology》2008,26(4):476-486
The objective of this work was the experimental and theoretical study of sawdust drying, in batch and continuous experiences, using a pulsed fluidized bed dryer.

In the batch experiences, a 23 factorial design was used to determine the kinetics of drying, the critical moisture content, and the effective coefficients of both diffusivity and heat transfer, all of them as a function of the velocity and temperature of the air, the speed of turning of the slotted plate that generates the air pulses in the dryer, using sawdust with 65% moisture in each run.

In the continuous operation, a 23 factorial design was used to study the effect of the solid flow and the velocity and temperature of the air on both the product moisture and the distribution of residence times. In order to determine these last ones, digital image processing was used, utilizing sawdust colored by a solution of methylene blue as tracer.

The statistically significant factors were the velocity and the temperature of the heating air, for both the continuous and batch operations. Although the speed of turn of the slotted plate was not significant, it was observed that the air pulses increased the movement of particles, facilitating its fluidization, especially at the beginning of drying.

The heat transfer coefficients were adjusted according to the equation Nu = 0.0014 Rep1.52, whose standard deviation of fit is 0.145.

The period of decreasing rate was adjusted to several diffusivity models, giving the best fit the simplified variable diffusivity model (SVDM). The curve of distribution of residence times was adjusted using the model of tanks in series, with values between 2.6 and 5 tanks.  相似文献   

9.
A model for a pneumatic conveying dryer is presented. Although the main emphasis is put on superheated steam drying of wood chips, it can be used for other porous materials as well

The model includes a comprehensive two-dimensional model for the drying of single wood chips which accounts for the main physical mechanisms occurring in wood during drying. The external drying conditions in a pneumatic conveying dryer were calculated by applying the mass, heat and momentum equations for each incremental step in dryer length. A plug flow assumption was made for the dryer model and the single particle and dryer models were solved in an iterative manner. The non-spherical nature of wood chips were accounted for by measuring the drag and heat transfer coefficients

Model calculations illustrate the complex interactions between steam, particles and walls which occur in a flash dryer. The drying rate varies in a very complex manner through the dryer. The internal resistance to mass transfer becomes very important in The drying of less permeable wood species such as spruce. Two effects were observed as the particle size was increased: firstly the heat transfer rate decreased, and secondly the residence time increased. To some extent, these effects compensate for each other, however, the net result is that larger chips have a higher final moisture content.  相似文献   

10.
Experiments were carried out in order to analyse the wall-to-bed and fluid-to-particle heat transfer coefficients in spouted Beds. wall-to-bed heat transfer coefficients were determined in cylindrical-conical and conical spouted beds for various gas flow rates, particle sizes and bed heights for spouted beds with and without draft tubes.

A new definition for wall-to-bed transfer coefficient was proposed baaed on experimental observations.

The heat tranefer area was also studied to ensure that a physically significant fluid-to-particle heat transfer coefficient was achieved.  相似文献   

11.
This report concerns the frequency dependence of the heat transfer coefficient for water flowing in a tube. The investigation of this phenomenon was conducted in a double pipe heat exchanger in which the center stream was pulsed. The frequencies used ranged from 10 to 160 cycles per minute, and the average flow rates corresponded to a Reynolds number range of 3700 to 21,400.

The data obtained indicate that pulsing can increase the individual heat transfer coefficient by as much as a factor of 5 or more, with the greatest increase occurring when the average Reynolds number is in the range typically considered as corresponding to the transition from laminar to turbulent regimes in steady flow. The percentage increase in the heat transfer coefficient also appears to be a function only of a dimensionless group which represents the frequency divided by the flow reversal frequency  相似文献   

12.
A superposition model for evaluation of the effects of polymer adsorption-gel formation and slip of polymer solutions exhibiting both phenomena has been applied to the capillary flow of aqueous solutions of two molecular weight grades of hydroxyethyl cellulose (Natrosol 250, types G and HR, supplied by Hercules Powder Company). The flow behaviour of the solutions investigated was non-Newtonian. Evaluations are presented of the effective thicknesses of polymer adsorption-gel formation and pure solvent layers, as a function of the wall shear stress, tube radius and polymer concentration, corresponding to the determinations of the effective velocity at the wall.

The results of the analysis indicate the surface characteristics undergo a dramatic change from polymer adsorption-gel formation at the tube surface to the phenomenon characterized by slip in a narrow tube radius interval which has important implications in enhanced oil recovery by polymer solution floods. It also provides an explanation for the contrasting behaviours observed in the flow of aqueous Natrosol solutions through packed beds (Sadowski, 1963) and filter cakes (Kozicki et al., 1972).  相似文献   

13.
Centrifugal extractors found wide applications in the industry, but up to now very little is known about what happens inside and how to calculate fluid-dynamic and mass transfer. For the basic research of dispersed liquid-liquid-systems in centrifugal fields a model centrifuge was built which is resistant to the high loads produced by rotation and which enabled us to observe the flow mechanism at the flooding points.

The processes inside have been measured and photographed by a high-speed-camera.

The calculation of centrifugal extractors is based mainly on the contact surfaces of the phases and the contact times. The maximum flow or flooding capacity is determined by three limits. Two of them are determined by the interface locations inside, controlled from the back pressure. The third limit is given by the maximum combined flow. This limit is dependent on the set of internals, the rotor speed and the physical properties of the liquid system. The experimental results will be shown and compared with new theories for the flooding capacities of perforated cylindrical plates in rotating liquid-liquid-systems.

The results predicted using the mathematical model for calculating the capacities are in fair agreement with the measurements.  相似文献   

14.
The solid-solid mass transfer performance of an external-loop airlift reactor was measured by dissolution of benzoic acid coated on nylon-6 particles, and the hydrodynamics of the gas-liquid-solid multiphase system in the airlift reactor were investigated. The solid-liquid system was designed to simulate the micro-carrier culture of animal cells, and some typical suspensions of immobilized enzyme particles.

The solid-liquid mass transfer coefficient remained constant below a superficial air velocity of 0.04 ms-1 for the particles examined, but increased rapidly with further increase in gas velocity. Solids loading (0.3-3.5% w/w) did not affect the mass transfer coefficient in turbulent flow.

The mass transfer coefficient was correlated with energy dissipation rate in the airlift reactor. The mass transfer coefficient in stirred vessels, bubble columns, fluidized beds, and airlift reactors was compared.

Over an energy dissipation Reynolds number of 4-400, the solid-liquid mass transfer coefficient in the airlift device was comparable to that obtainable in fluidized beds. The performance of the airlift was distinctly superior to that of bubble columns and stirred tanks.  相似文献   

15.
The basic differential equations controlling the temperature and concentration field in a single packed bed of fine particles were derived and solved for the general case in which unsteady, two-dimensional heat and mass transfer lakes place with an endothermic process.

The time-change of particle- and fluid-temperature and concentration of water vapor (humidity) were calculated by a numerical method which assumed that the rate of the endothermic process can be expressed by a first-order rate equation and that the fluid flowing through the bed is of the piston flow type.

The experiments were conducted for the drying of silica-gel and the two-stage dehydration reaction of natural gypsum to demonstrate the applicability of the present theoretical analysis.

It has been found that the calculated results show satisfactory agreement with the measured data within the range of the experimental conditions employed.  相似文献   

16.
The evaluation of the heat transfer coefficient hwp between a heat exchanging surface immersed in a gas fluidized bed and the adjacent layer of dense phase particles is analyzed in this contribution. Gas convective and radiant effects are not included in the present analysis.

The inclusion of hwp, or an equivalent formation, in mechanistic models describing heat transfer has been necessary because the sudden voidage variation close to the immersed wall restrains significantly the heat transfer rate. However, there is not at present a widely accepted expression to evaluate hwp.

A precise formulation for hwp accounting for transient conduction inside spherical particles, the Smoluchowski effect, the concentration of particles in the adjacent layer (Np) and an effective separation gap (l0) is developed here.

Although Np can be estimated, in principle, from experimental evidence in packed beds, and it is reasonably expected that l0 = 0, the analysis of experimental heat transfer rates in moving beds, packed beds, and bubbling fluidized beds indicate that values of hwp are, in general, smaller than expected from these assumptions. Appropriate values of l0 and Np are then stimated by fitting the experimental data.

The probable effect of surface asperities is also discussed by analyzing a simplified geometrical model. It is concluded that the parameter l0 can be also effective to account for particle roughness, independently of thermal properties.  相似文献   

17.
The present work analyzes the process of mass transfer with chemical reaction in a system formed by a periodically curved catalytic wall, which is wetted by a descending film. Through the film a limiting gaseous reactant is transferred from the stagnant gas phase to the catalyst where the chemical reaction takes place.

The film hydrodynamics is first solved with the unknown free surface through a regular perturbation technique, by expanding the resulting equations in terms of a small parameter: the ratio between the film average thickness and the wave length of the curved solid wall. Assuming that the system is isothermal and at steady state, the mass transfer of the gas is afterwards incorporated. A first order kinetics whose limiting reactant is in the gas phase occurs in the solid phase.

Once the model is established and solved, the influence of the dimensionless parameters upon the effectiveness factor and the solid-liquid Biot number is then studied; important effects are found by changing the solid surface curvature at constant flow rate and catalyst volume. Besides, changes in the flow rate, the Peclet number and the ratio between the solid average width and the film average thickness, show significant effects on the net mass transfer process.  相似文献   

18.
The purpose of this study is to verify the vibration and damping characteristics of a partially-layered elastic-viscoelastic-elastic structure both theoretically and experimentally.

The fourth-order differential equations of motion are derived for the transverse vibration of a three-layered sandwich beam with a viscoelastic (or adhesive) core layer. The transverse displacements of the constraining layer and the base beam are assumed to have different parameters. Both the transverse normal strain and the longitudinal shear strain of the viscoelastic core layer are included in the equations of motion. The solution to the resulting equations is obtained by solving a boundary value problem.

Numerical analysis of the equations and experimental measurements is illustrated by a cantilever beam in transverse vibration.

The vibration and damping effects of completely and partially covered beams are investigated and the effect of the position changes of partial coverage is intensively analyzed.  相似文献   

19.
An experimental investigation was made on the condensation of water steam in a vertical corrugated duct. The data have been correlated as follows

Co=5.11Re-0.431 150 ≤ Re ≤ 350 Co = 0.034311Re-0.425350 ≤Re ≤l000

The vertical corrugated duct is constructed of two corrugated plates with corrugation inclination angles of β = 0 and β = 45° respectively (relative to the overall flow direction).

The condensation heat transfer coefficient in the corrugated duct is more than two times higher than that of bulk condensation on a vertical plate. A physical model was proposed to explain the heat transfer enhancement. Attention was also paid to the effect of exit steam velocity on the heat transfer during partial condensation. It was demonstrated that the heat transfer in the corrugated duct was strongly affected even at a low exit velocity, which was different from the case of bulk condensation on a vertical plate. Experimental apparatuses and the method for examining their reliability are described in detail.  相似文献   

20.
The performance of pitched blade turbines in a gas-liquid dispersion has been studied. The two-phase hydrodynamics, gassed power consumption and mass transfer properties have been examined using six blade open turbines with blade angles from 30 to 60 degrees to the horizontal, mounted for down flow.

There are two distinct regimes by which gas leaving the sparger reaches the impeller: at low gas rates this is indirect via the recirculation loops, while at higher gas flow rates the flow is direct.

The transition between these regimes is reflected in power consumption and mass transfer characteristics and is related to the formation of large cavities behind the blades. It was also concluded that, with respect to mass transfer efficiency, a pitched blade turbine is at least as good as a Rushton turbine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号