首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
《应用化工》2022,(7):1673-1678
采用铁炭微电解法、Fenton超声氧化法、铁炭微电解/Fenton超声氧化联用技术对HMX生产废水进行了处理,考察了不同实验因素对废水COD去除率的影响规律,得到相应的最佳工艺参数和联用工艺处理效果。结果表明,铁炭微电解法处理HMX废水的最佳工艺条件为:反应时间50~60 min,反应温度15~20℃,初始pH值3~4,铁炭和废水料液比1∶1,此条件下的COD去除率可达58.12%;Fenton超声氧化法处理HMX废水的最佳工艺条件为:超声时间30 min,H_2O_2投料量0.24 mol/L,Fe(2+)投料量0.023 mol/L,超声频率45 kHz,超声功率75%,此条件下的COD去除率可达85.51%;铁炭微电解-Fenton超声氧化联用工艺处理HMX废水,COD去除率高达96.69%,比单一采用铁炭微电解法和Fenton超声氧化法分别高38.57%和11.18%,联用工艺处理HMX废水优于单一处理效果,优势显著。  相似文献   

2.
以吡啶为模拟污染物,研究了铁碳微电解法降解含吡啶废水的影响因素。考察了铁碳投加量m(Fe/C)∶m(L)、pH值、曝气量以及反应时间4个因素对铁碳微电解法降解吡啶效果的影响,基于单因素实验结果,设计三水平四因素正交试验,确定最佳工艺参数。结果表明,各因素对含吡啶废水降解率的影响大小依次为:m(Fe/C)∶m(L)反应时间曝气量pH值。最佳工艺参数为:m(Fe/C)∶m(L)为1∶1,反应时间为150 min,曝气量为1.2 L/min,p H值为4.0。在最佳工艺条件下,吡啶平均降解率为86.56%。  相似文献   

3.
采用铁炭微电解法、Fenton超声氧化法、铁炭微电解/Fenton超声氧化联用技术对HMX生产废水进行了处理,考察了不同实验因素对废水COD去除率的影响规律,得到相应的最佳工艺参数和联用工艺处理效果。结果表明,铁炭微电解法处理HMX废水的最佳工艺条件为:反应时间50~60 min,反应温度15~20℃,初始pH值3~4,铁炭和废水料液比1∶1,此条件下的COD去除率可达58.12%;Fenton超声氧化法处理HMX废水的最佳工艺条件为:超声时间30 min,H_2O_2投料量0.24 mol/L,Fe~(2+)投料量0.023 mol/L,超声频率45 kHz,超声功率75%,此条件下的COD去除率可达85.51%;铁炭微电解-Fenton超声氧化联用工艺处理HMX废水,COD去除率高达96.69%,比单一采用铁炭微电解法和Fenton超声氧化法分别高38.57%和11.18%,联用工艺处理HMX废水优于单一处理效果,优势显著。  相似文献   

4.
Fe/C微电解法处理甲基紫染料废水   总被引:7,自引:1,他引:7  
卫兵兵  李剑敏  王慧 《应用化工》2006,35(5):359-361,372
利用Fe/C固定床反应器,对Fe/C微电解法处理甲基紫染料废水的反应进行了研究。考察了进水pH值、进水流量、微电解反应柱中的Fe/C体积比、反应时间对处理效果的影响。结果表明,Fe/C微电解法可较好地处理甲基紫染料废水,甲基紫染料去除率高,脱色率好,最佳工艺条件为:进水pH值3.19,水流量为0.16 mL/s,微电解反应柱中的Fe/C体积比为1∶2,反应时间为3.5 h,甲基紫的去除率可达98.2%。  相似文献   

5.
应用超声波/铁炭微电解联合技术,以实际印染废水为目标污染物,采用自制的反应装置考察超声波/铁炭微电解技术的协同效应,研究废水的初始pH值、铁屑投加量、停留时间等因素对废水降解效果的影响,并在相同条件下对有无超声的铁炭微电解处理废水的降解效果进行对比.研究结果表明:单独铁炭微电解条件下,当铁/水体积比为1/4,炭/水体积比为1/2,反应时间为120min,pH值为7时,对废水的COD去除率达到90%;而在超声条件下,铁炭微电解对废水的处理效果明显改善,COD去除率达到98%,说明超声波和铁炭微电解对处理印染废水有明显的协同效应.  相似文献   

6.
采用铁炭微电解吸附-Fenton氧化、超声联合工艺处理高浓度有机实验室废水,研究了pH值、H2O2投加量、FeSO4投加量、反应时间等因素对COD去除率的影响。结果表明:铁炭微电解吸附体系在pH=5、Fe∶C体积比为1∶1、时间为3h条件下COD去除率为24%;再经Fenton氧化控制反应时间2h,在FeSO4投加量为6g/L、H2O2投加量为90mL/L、pH=3的处理条件下,废水COD总去除率达48.32%。  相似文献   

7.
郑占英  童军  寇俊杰  陈建宇  刘桂龙 《农药》2012,51(8):578-580
[目的]单嘧磺酯是我国具有自主知识产权的超高效除草剂,在其生产过程中有一定量的酸性含盐废水产生,废水COD为1477~1525 mg/L。[方法]采用铁炭微电解法对该废水进行预处理,详细研究了铁炭质量比、pH值和反应时间对废水COD去除效果的影响。[结果]反应最佳条件为铁炭质量比为1∶1、pH值为3.0、反应时间2 h时,废水COD去除率达75%以上。[结论]铁炭微电解法用于单嘧磺酯废水预处理是切实可行的。  相似文献   

8.
利用原电池原理,采用铁炭微电解法对焦化废水进行脱氮处理。以铁炭作为正负电极,将NO2^--N、TN还原成氮气,最终达到焦化废水脱氮的目的。着重研究了pH值、炭的粒径、Fe/C(质量比)、反应时间、混凝pH值等对NO2^--N、TN的去除率影响。同时与传统脱氮工艺进行了比较,为焦化废水脱氮提供了一种新的处理方法。  相似文献   

9.
采用铁炭微电解法对苯胺废水进行预处理,微电解的作用使苯胺废水中的大部分苯胺降解,而且出水中含有足够的Fe2+,从而减少了催化氧化过程中双氧水的消耗量。结果表明:当进水苯胺、CODCr的质量浓度分别为204、448mg/L,色度为500倍时,在最佳工艺条件(微电解工艺的铁炭体积比1∶1、废水pH值为5,停留时间90min;催化氧化工艺条件为双氧水(30%)用量0.3mL/L,pH值调节至5,反应时间60min)下,该方法对苯胺的去除率为95.32%,对CODCr的去除率达到66.96%,色度的去除率为92%。  相似文献   

10.
Fe-Cu-C三元固定床微电解法处理酸性品红染料废水   总被引:1,自引:0,他引:1  
梁少晖  张美婷  朱江  卫兵兵 《应用化工》2007,36(9):941-943,946
利用Fe-Cu-C三元固定床微电解法处理酸性品红染料废水,考察了进水pH值、进水流量、微电解反应柱中的Fe-Cu-C体积比、反应时间,对酸性品红染料去除率的影响。结果表明,反应最佳工艺条件为:进水pH值4.10,水流量为0.15 mL/s,微电解反应柱中的Fe∶Cu∶C=1∶1∶2(体积比),反应时间为300 min时,酸性品红的去除率可达96.2%。  相似文献   

11.
超声/微电解协同处理含磷废水   总被引:1,自引:0,他引:1  
试验采用超声/微电解联合体系处理含磷废水。以含磷废水为目标污染物,主要考察了温度、废水的浓度、反应时间、废水的初始pH、铁炭比和铁水比对废水中总磷去除效果的影响。在此基础上,挑选主要影响因素设计正交试验(L9(34)),得出反应条件的最优组合;超声辅助进行单因素对比试验,论证超声辅助能否大幅度提高除磷效果。结果表明,最佳的工艺条件为初始pH=4.00,反应时间60 min,铁炭体积比2:1,铁水体积比1/10,且在最佳条件下,总磷的去除率为77.3%,超声波技术联用后,总磷的去除率可高达92%以上。对比试验结果和动力学研究表明,超声波对微电解技术有良好的协同作用,协同因子E=2.25,且降解过程符合表观1级动力学规律。  相似文献   

12.
采用Fenton法深度处理干法腈纶废水,试验中考察了Fe2+投加量、H2O2投加量、pH、反应时间等l习素对CODcr处理效果的影响,确定了反应过程中的最佳工艺参数,并分析了该法处理废水的作用机理。试验结果表明:影响Fenton氧化的因素从大到小依次为H2O2投加量、初始pH值、反应时间、Fe2+投加量。最佳试验条件为:e(Fe2+)为18.0mmol/L,dH2O2)为49.0mmol/L,pH为3.0,反应时间为30min。在此条件下出水COD。可降至47.4mg/L,去除率可达到80.3%。显示该方法对于干法腈纶废水的处理具有巨大的前景和潜力。  相似文献   

13.
研究了石化碱渣废水在内电解联合O3工艺中的预处理,考察了循环时间、pH值、反应温度、Fe/C比和O3量对降解效果的影响。实验结果表明,当循环时间为4 h,pH值为3,反应温度50℃,Fe/C质量比为1:0.3和O3时间4 h的条件下,废水中COD和硫化物的去除率分别达到68.16%和95.31%。此外,废水的B/C比从0.09提高到0.18,可生化性大大增强。  相似文献   

14.
采用微电解+Fenton法处理DDNP废水,考虑微电解系统的活性炭的投加量,Fe/C,pH,反应时间等因素在不同条件下原水的COD去除情况及色度变化。实验结果表明,最佳pH为4,Fe的投加量为30 g/L,最佳Fe/C为3/2,最佳反应时间60 min。COD的去除最高可达到58.8%。Fenton系统H2O2的投加量为4 mg/L,微电解+Fenton系统的COD去除率为87.53%。  相似文献   

15.
曝气微电解预处理化工酸性废水的试验研究   总被引:7,自引:0,他引:7  
采用曝气铁碳微电解工艺预处理高浓度有机酸性废水,研究了铁与碳质量比、反应时间对CODcr去除率等因素的影响。结果表明:在m(Fe):m(C)=4:1、反应5h的条件下,进水CODcr为1675mg/L和pH值1.77时,对CODcr的去除率为51.5%,废水的BOD5/CODer值由0.22提高到0.35.为酸性废水中和系统改造提供了科学依据。  相似文献   

16.
首先用改性焦炭、硫酸铝、PAM对焦化废水进行预处理,结果表明改性焦炭预处理焦化废水效果最佳,COD去除率为29.7%。然后利用Fenton试剂对焦化废水深度处理,单因素实验和正交试验结果表明,当pH=4,H2O2投加量为15mmol.L-1,[Fe2+]/[H2O2]=1∶10,反应时间30min时,处理效果最佳,COD去除率可达92%。各因素对COD去除率影响的强弱顺序为:pH〉H2O2投加量〉Fe2+/H2O2的摩尔比。  相似文献   

17.
采用底部曝气铁碳微电解和SBR法处理CODCr为625 mg/L、B/C约0.11、色度为300~400倍的粘胶纤维废水,考察了pH、Fe/C比、反应时间等条件对铁碳微电解提高废水可生化性的影响。结果表明在pH为3.5、铁碳比为4∶1、反应时间为30 min条件下铁碳微电解出水的B/C比大于0.3,后续经SBR工艺处理,出水COD去除率大于88%、色度去除率达84.9%。  相似文献   

18.
采用电Fenton法预处理染料废水,对影响COD及色度去除率的各种因素,包括内电解反应的初始pH值、铁的投加量、铁炭投加比,Fenton试剂氧化处理过程中初始pH值、H2O2的投加量及投加方式、反应时间等进行了研究。结果表明,内电解反应的最佳条件为:pH值为3.0,铁的投加量为25g/L,Fe/C为1:1.3;Fenton试剂氧化处理染料废水的最佳条件为:H2O2投加量为30mmol/L,pH值为内电解出水pH值(4.0左右),反应时间为50min。COD去除率可达58%,色度去除率可达95%以上,B/C的值也由原来的0.08提高到0.36左右。  相似文献   

19.
针对铁碳微电解反应中填料易板结及处理效率低等问题,通过增加内循环装置改进反应器结构,同时将铁碳微电解与H2O2进行工艺耦合,用于处理多晶硅有机废水,考察了Fe-C投加量、初始pH值、H2O2投加量、反应时间等工艺条件对COD去除率的影响,并通过响应面法优化了工艺条件。结果表明,各工艺条件对多晶硅有机废水COD去除效果的影响大小为:铁碳投加量>反应时间>H2O2投加量>初始pH值,其最适宜工艺条件为:铁碳投加量250 g·L-1,初始pH值2.8,H2O2投加量112 mL·L-1,反应时间83 min,该反应条件下COD的去除率为71.26%。铁碳/H2O2降解多晶硅有机废水COD的动力学回归方程为Y=0.5273X-0.6347,降解COD的速率常数为0.527 3 min-1。  相似文献   

20.
采用混凝-微电解-催化氧化工艺预处理含拉开粉的丁腈橡胶废水,通过静态和动态放大试验探讨了微电解时的pH值、反应时间、铁炭比、气水比以及催化氧化时的pH值、反应时间、氧化剂和催化剂用量等对化学需氧量、悬浮物及拉开粉去除率的影响。结果表明,在微电解反应时pH值为3~4、铁炭比为2/1(质量比)、反应时间为30min、气水比为12/1(体积比),以及催化氧化反应时pH值为5左右、催化剂质量浓度为0.75g/L、氧化剂质量浓度为5g/L、反应时间4h的条件下,处理后废水的悬浮物去除率可达到90%以上,化学需氧量去除率达到45%以上,拉开粉的去除率达到90%以上。生物化学需氧量与化学需氧量比值由0.08提高到0.16,废水可生化性得到提高,水中悬浮物得以大幅度降低,水质得到改善,为后续处理奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号