首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eight nonlactating, nonpregnant Jersey cows were used in a crossover experiment with two 28-d periods. The control diet consisted of corn silage plus a concentrate mix (68:32, DM basis). The treatment diet was the same, except that NH4Cl and (NH4)2SO4 (98 g of each/d per cow) were added to the concentrate. Cows fed the treatment diet had lower blood pH, higher ionized Ca in blood, and more urinary excretion of Ca, titratable acid, and ammonium than cows fed the control diet. For cows fed the treatment diet, ionized Ca in blood was greater after equal amounts of Na2-EDTA were infused to both treatment groups, and treatment cows recovered faster after infusion of Na2-EDTA was stopped than did control cows. The treatment diet induced mild metabolic acidosis and increased the cows' ability to maintain normal blood Ca concentrations; it potentially could reduce incidence of milk fever.  相似文献   

2.
Forty-eight Holstein cows with two or more previous lactations and no history of parturient paresis were randomly assigned to one of four prepartum diets in a 2 x 2 factorial design to determine the effect of dietary supplementation with ammonium salts and Ca intake on serum Ca concentrations at calving. Four diets provided either 53 g total dietary Ca/d or 105 g Ca/d and were either supplemented with ammonium salts [100 g/d each of NH4Cl and (NH4)2SO4] or unsupplemented. Anion-cation balance of the diets, calculated as milliequivalents (Na + K)--(Cl + S), was -75 meq/kg DM with ammonium salts and +189 meq/kg DM without ammonium salts. Experimental diets were fed from 21 d prior to expected parturition until calving. Calcium intake during the feeding period did not affect the incidence of parturient paresis or serum concentrations of ionized Ca at calving. The incidence of parturient paresis was 4% with and 17% without the ammonium salts. Cows fed diets containing ammonium salts had higher serum ionized and total Ca concentrations at parturition. Serum concentrations of Mg, P, Na, K, and Cl on the day of parturition were unaffected by dietary treatment.  相似文献   

3.
Jersey cows were fed three alfalfa haylage-based diets with different cation-anion balances beginning 6 wk preceding third or later calving and ending 24 to 36 h postpartum. Sodium and Cl as percentages of dietary DM were .08 and 1.66 in diet 1 (anionic, 5 cows), .44 and .91 in diet 2 (intermediate, 6 cows), and 1.60 and .34 in diet 3 (cationic, 6 cows). Cation-anion balances were 22, 60, and 126 meq/100 g DM; Ca:P ratios averaged 4:1. Cows fed diet 1 in comparison with cows fed diets 2 or 3 over 6 wk had similar concentrations of Ca, P, and Na but higher concentrations of Mg and K in plasma and higher urinary excretions of Ca and Mg. Concentrations of 1,25-dihydroxyvitamin D 3 d before parturition were higher in cows fed diet 1 than in cows fed diets 2 or 3. Within 36 h after calving, mean concentrations of Ca in plasma (mg/dl, range) of cows fed diets 1 to 3, respectively, were 7 (8.7 to 6.2), 6.5 (7.8 to 3.9), and 6.3 (7.8 to 3.8). Number of cases of clinical milk fever by diet were 0 of 5, 2 of 6, and 1 of 6 cows. Alteration of dietary cation-anion balance by addition of Cl may effectively reduce incidence and severity of parturient hypocalcemia.  相似文献   

4.
Eight multiparous Holstein cows (676 ± 57 kg of body weight; 121 ± 17 d-in-milk) were used in a replicated 4 × 4 Latin square design to determine the effects of 4 sources of carbohydrate on milk yield and composition, ruminal fermentation, and microbial N flow to the duodenum. Four cows in one of the Latin squares were fitted with permanent ruminal cannulae. Diets contained (DM basis) 50% forage in combinations of alfalfa hay and barley silage, and 50% concentrate. The concentrate portion of the diets contained barley, corn, wheat, or oats grain as the primary source of carbohydrate. Intake of DM ranged from 24.0 to 26.2 kg/d, and it tended to be lower in cows fed the wheat-based diet compared with those fed the barley-based diet; consequently, milk yield tended to be lower in cows fed the wheat-based diet compared with those fed the barley-based diet. Cows fed the barley- or wheat-based diets had a lower milk fat content compared with those fed the corn-based diet. Ruminal fermentation characteristics were largely unaffected by the source of dietary carbohydrate, with similar ruminal pH and volatile fatty acid and ammonia concentrations for the first 6 h after the morning feeding. Dietary treatment did not affect total tract apparent digestibility of DM, organic matter, and neutral detergent fiber; however, total tract apparent digestibility of starch in cows fed the oats-based diet was higher compared with those fed the corn-and wheat-based diets. Nitrogen that was used for productive purposes (i.e., N secreted in milk + N apparently retained by the cow) tended to be lower in cows fed the wheat-based diet compared with cows fed the barley-, corn-, or oats-based diets. Urinary purine derivative (PD) excretion was similar in cows fed the barley-, corn-, and wheat-based diets; however, purine derivative excretion was higher in cows fed the barley-based diet compared with those fed the oats-based diet. Consequently, estimated microbial N flow to the duodenum was 49 g/d higher in cows fed the barley-based diet compared with those fed the oats-based diet. Improved production performance with corn and barley diets appeared to be due to greater nutrient absorption than in cows fed oats and wheat diets, rather than improved nutrient utilization efficiency.  相似文献   

5.
Eighty-two multiparous Holstein cows were enrolled 28 d before expected calving and assigned to 1 of 4 dietary treatments in a randomized block design experiment with a 2 × 2 factorial arrangement of treatments to determine the effect of feeding a neutral or acidogenic diet varying in Ca concentration on prepartum and postpartum intake, blood mineral and metabolite concentrations, and postpartum milk production. Prepartum diets were formulated to provide a dietary cation-anion difference (DCAD) of ?21 (negative, NEG) or ?2 (neutral, NEU) mEq/100 g of dry matter with either 1.3% or 1.8% Ca. After calving, cows remained on trial through 63 d in milk (DIM) and were fed a common lactation diet. Urine pH was lower for NEG compared with NEU and tended to be lower for 1.8% Ca compared with 1.3% Ca. Fractional excretion of Ca and Mg in urine was greater for NEG than for NEU. Prepartum plasma bicarbonate was lower and P was higher for NEG compared with NEU. Prepartum plasma P and blood urea nitrogen to creatinine ratio was higher for 1.3% compared with 1.8% Ca. Postpartum, concentrations of plasma total protein, albumin, blood urea nitrogen, Mg, and ionized Mg (iMg) were higher and Na was lower for NEU compared with NEG. An interaction of DCAD and Ca was observed for plasma creatinine, which was highest for cows fed NEU and 1.3% Ca compared with all other treatments. Interactions of DCAD and DIM were observed for plasma bicarbonate and iMg. Bicarbonate was higher at 3 DIM and lower at 14 DIM for NEU compared with NEG. Concentrations of iMg were higher at 1, 2, and 14 DIM for NEU compared with NEG. Interactions of Ca and DIM were observed for plasma Ca, Cl, and anion gap. Compared with cows fed 1.5% Ca, those fed 1.3% Ca had lower Ca and anion gap and higher Cl at 1 DIM and lower Cl and higher anion gap at 14 DIM. No differences were observed in body weight or body condition score due to DCAD or Ca. Prepartum dry matter intake (DMI) was lower for NEG compared with NEU and lower for 1.8% compared with 1.3% Ca. Postpartum DMI was not different among treatments. An interaction was observed for DCAD and DIM due to higher milk yield after 45 DIM for NEG compared with NEU. No differences were observed in milk component percentage or yield among treatments. There was an interaction of DIM and Ca for milk urea concentrations, which were higher at 5 wk and lower at 6 wk for 1.3% Ca compared with 1.8% Ca. These results suggest that feeding NEG prepartum alters plasma and urine mineral concentrations compared with feeding NEU and supports increased milk yield after 45 DIM. Feeding 1.8% Ca prepartum only improved plasma Ca at 1 DIM. Feeding either NEG or 1.8% Ca reduced DMI prepartum compared with NEU or 1.3% Ca.  相似文献   

6.
Six anionic salts [MgCl2.6H2O, MgSO4.7H2O, CaCl2.2H2O, CaSO4.2H2O, NH4Cl, and (NH4)2SO4] were evaluated for their effects on dietary DM intake, systemic acid-base balance, and urinary excretion of Ca. Each of the six salts was fed to 12 nonlactating, nonpregnant Holstein cows for 1-wk periods in two replicates of a 6 x 6 Latin square design. All salts were fed at the rate of two equivalents cow-1 d-1. Anionic salt treatments did not decrease DM intake compared with the control diet fed without salts. Blood pH was not affected by any of the salt treatments; however, mild, compensated metabolic acidosis was evidenced by decreased blood bicarbonate concentrations and decreased blood base excess when any of the salts was fed. Urinary pH and urinary base excess also were lowered by all of the salts. Fractional excretion of urinary Ca was increased by all salt treatments. All six anionic salts tested were of similar value in their acidifying effects and in their ability to increase urinary excretion of Ca.  相似文献   

7.
The objectives of this study were to determine the effects of NutriDense and waxy corn hybrids as silage and grain sources on milk yield, milk composition, digestibility of dietary components, and rumen characteristics. Six multiparous (intact) and six primiparous (ruminally cannulated) Holstein cows were assigned at 72 to 90 d of lactation to a 3 x 6 Latin rectangle design experiment to treatment of: 1) control diet, 2) NutriDense corn diet, and 3) waxy corn diet. Diets consisted of 10.9% alfalfa silage, 32.8% corn silage, 27.9% cracked corn grain, and 28.4% other ingredients (DM basis). Milk, FCM, and milk fat and protein yields were higher for cows fed the waxy diet than those fed the control diet. Milk protein percentage tended to be higher for cows fed the control and waxy diets than those fed the NutriDense diet. Dry matter intake tended to be higher for cows fed the waxy diet than the NutriDense diet. Apparent DM, OM, CP, ADF, NDF, and gross energy digestibilities were similar among dietary treatments, while apparent starch digestibility was higher for the waxy corn than for the NutriDense corn. Rumen NH3-N concentration was higher for cows fed the NutriDense diet than for those fed the control and waxy diets. The proportion of ruminal propionate was higher for the waxy diet than the control diet. NutriDense and waxy corn hybrids can be effective substitutes for conventional yellow dent corn hybrids in lactating dairy cow rations.  相似文献   

8.
A study was conducted to determine the impact of dietary P intake on vitamin D metabolism and incidence of parturient paresis in aged dairy cows. Thirty dairy cows (10/group) were fed one of three experimental diets for approximately 28 d precalving. Phosphorus intake was .7, 1, or 3 times daily maintenance requirement and Ca intake was three times daily maintenance requirement for all cows. There was a 20% incidence of parturient paresis in each group. Prepartum dietary P intake had no effect on precalving or calving plasma Ca concentrations. Cows fed the low P (.7 times) diet had higher plasma Ca at 3 and 5 d postcalving than did cows fed P at 1 or 3 times maintenance. Plasma phosphorus concentrations reflected dietary P intake. Dietary P intake had no effect on plasma Mg, free hydroxyproline, 1,25-dihydroxyvitamin D, or 24,25-dihydroxyvitamin D concentrations. The range in dietary P from .7 to 3 times maintenance requirement had no effect on the incidence of parturient paresis. However, it did appear to influence Ca homeostasis during the postpartum period as cows fed the low P diet had higher plasma calcium concentrations postcalving. This may be a result of the low P diet enhancing intestinal C absorption by a vitamin D-mediated transport mechanism.  相似文献   

9.
Forty-seven cows (24 primiparous) were assigned to one of four normal (20.5%) ADF diets for wk 2 to 5 postpartum. Dietary treatments in a 2 x 2 factorial design were diets of 13.8 versus 18.8% CP and 0 versus 12 g/d of niacin per cow. During wk 6 to 13 postpartum, cows were fed low (11.8%) ADF diets while maintaining CP and niacin treatments. Low CP diets contained solvent-extracted soybean meal; rumen soybean meal with enhanced undegradable protein was used in high CP diets. High CP diets increased milk protein percentage in multiparous cows and yields of milk, 4% FCM, fat, protein, and SNF in primiparous cows during the normal fiber period. High dietary CP also increased yields of 4% FCM, fat, protein, and SNF in primiparous cows fed normal fiber diets. When switched to low fiber diets, primiparous cows fed high CP diets decreased more in 4% FCM and fat yields than those fed low CP. Primiparous cows fed niacin decreased more in 4% FCM than controls. High dietary CP increased DMI in primiparous cows fed normal fiber diets, but those fed low CP diets increased more in DMI when switched to low fiber diets. Supplemental niacin appeared to interact with dietary CP in multiparous cows, increasing blood glucose and decreasing blood beta-hydroxybutyrate and NEFA concentrations with the high CP, normal fiber diet. Increased dietary CP improved yields of milk and milk components in primiparous cows.  相似文献   

10.
《Journal of dairy science》2022,105(2):1199-1210
Dairy cows commonly undergo negative Ca balance accompanied by hypocalcemia after parturition. A negative dietary cation-anion difference (DCAD) strategy has been used prepartum to improve periparturient Ca homeostasis. Our objective was to determine the influence of a negative DCAD diet with different amounts of dietary Ca on the blood acid-base balance, blood gases, and metabolic adaptation to lactation. Multiparous Holstein cows (n = 81) were blocked into 1 of 3 dietary treatments from 252 d of gestation until parturition: (1) positive DCAD diet and low Ca (CON; containing +6.0 mEq/100 g DM, 0.4% DM Ca); (2) negative DCAD diet and low Ca (ND; ?24.0 mEq/100 g DM, 0.4% DM Ca); or (3) negative DCAD diet plus high Ca supplementation (NDCA; ?24.1 mEq/100 g DM, 2.0% DM Ca). There were 28, 27, and 26 cows for CON, ND, and NDCA, respectively. Whole blood was sampled at 0, 24, 48, and 96 h after calving for immediate determination of blood acid-base status and blood gases. Serum samples collected at ?21, ?14, ?7, ?4, ?2, ?1, at calving, 1, 2, 4, 7, 14, 21, and 28 d relative to parturition were analyzed for metabolic components. Results indicated that cows fed ND or NDCA had lower blood pH at calving but greater pH at 24 h after calving compared with CON. Blood bicarbonate, base excess, and total CO2 (tCO2) concentrations of cows in ND and NDCA groups were less than those of cows in CON at calving but became greater from 24 to 96 h postpartum. The NDCA cows had lower blood bicarbonate, base excess, and tCO2 at 48 h and greater partial pressure of oxygen after calving compared with ND. Cows fed ND or NDCA diets had lower serum glucose concentrations than CON cows before calving but no differences were observed postpartum. Serum concentrations of total protein and albumin were greater prepartum for cows in ND and NDCA groups than for those in CON. Postpartum serum urea N and albumin concentrations tended to be higher for ND and NDCA cows. Cows fed ND or NDCA diets had elevated serum total cholesterol concentration prepartum. During the postpartum period, triglycerides and NEFA of cows fed ND or NDCA diets tended to be lower than those of CON. Cows fed the NDCA diet had greater postpartum total cholesterol in serum and lower NEFA concentration at calving than ND. In conclusion, feeding a prepartum negative DCAD diet altered blood acid-base balance and induced metabolic acidosis at calving, and improved protein and lipid metabolism. Supplementation of high Ca in the negative DCAD diet prepartum was more favorable to metabolic adaptation to lactation in dairy cows than the negative DCAD diet with low Ca.  相似文献   

11.
Objectives were to determine the effect of dietary concentration of P in DM on routes of excretion of P and to evaluate direct and indirect measures of calculating DM digestibility and P excretion. Twelve lactating Holstein cows were fed 20 kg of DM containing .41% P daily for 4 wk and then were assigned randomly to one of three diets: low (.30%), medium (.41%), or high (.56%) in P for 9 wk. Total collections of excreta (feces and urine) and milk were made during wk 4, 7, 10, and 13. At wk 4, cows excreted 88.2% of P consumed daily: 68.6% of excreted P in feces, 1.0% in urine, and 30.3% secreted in milk. Cows assigned to the low P diet decreased intake by 26.8% and excretion of P in feces by 22.7% in wk 13 compared with wk 4, whereas cows fed the high P diet increased intake by 36.5% and excretion of P in feces by 48.6%. Digestibility of DM was 62.6% when calculated from total collection of feces but only 55.7 or 56.5% when estimated indirectly using Cr or acid detergent lignin as indigestible markers. Apparent excretion of P was less than that estimated using either of the marker techniques (49.7 vs. 59.1 and 58.1 +/- .7 g/d of P) because digestibility of DM was underestimated. A prediction equation was developed for P excretion based on P intake and milk production.  相似文献   

12.
The effects of modifying the dietary profile of neutral detergent-soluble carbohydrates (NDSC) on milk production and rumen fermentation were determined. Corn silage and alfalfa hay-based diets were formulated to contain 40% calculated NDSC supplied primarily by dried citrus pulp as a source of neutral detergent-soluble fiber (NDSF), or corn products as sources of starch. Diets were compared within cow with reversal experiments with two periods. In experiment 1, 11 multiparous Holstein cows including three ruminally cannulated animals were individually fed diets containing 23.6% citrus pulp (diet CPD) or 25.3% corn hominy (diet HD) on a dry matter basis. In experiment 2, 184 animals fed as two groups received diets containing 20.5% citrus pulp (diet CPD) or 19.5% cornmeal (diet CMD). Diets CPD provided more dietary NDSF and HD and CMD more starch. In experiment 1, cows fed HD had a greater milk protein percentage (+0.12%), and tended to yield more milk protein (0.08 kg/d) than cows fed CPD. Although ruminal H+ concentrations did not differ between diets, diet x time postfeeding interactions were significant. Ruminal organic acid concentrations did not differ between diets. In experiment 2, cows fed CMD yielded more milk (3.9 kg/d), 3.5% fat- and protein-corrected milk (2.6 kg/d), fat (0.05 kg/d), and protein (0.08 kg/d), whereas cows fed CPD produced greater concentrations of fat (+0.18%), and milk urea nitrogen (0.76 mg/dl). Modifying the proportions of NDSC in the diet can alter milk production and composition, the pattern of ruminal fermentation, and N utilization in dairy cows.  相似文献   

13.
In the cow, inadequate concentrations of progesterone during gestation may lead to an abrupt termination of pregnancy. The primary organ involved in progesterone catabolism is the liver, which contains an abundance of cytochrome P450 isozymes (EC 1.14.14.1; mixed-function monooxygenases). The objectives of the current experiment were to determine the effect of feeding 2 isoenergetic and isonitrogenous diets, formulated to cause divergent insulin secretion, on hepatic cytochrome P450 2C (CYP2C) and 3A (CYP3A) activity as well as the resulting biological half-life of progesterone. Twenty-two Holstein cows averaging 80 ± 7 d in milk were randomly assigned to either a high cornstarch diet or a high fiber diet in a crossover experimental design consisting of two 14-d periods. Dry matter intake, milk yield, milk lactose yield, and milk lactose percentage were similar between the 2 diets. Milk fat yield and milk fat percentage were higher in cows fed the high fiber diet, whereas milk protein yield tended to be higher and milk protein percentage was higher in cows fed the high cornstarch diet. Energy balance tended to be improved by 57% in cows consuming the high cornstarch diet. Insulin concentrations at the time of liver biopsy (3.16 ± 0.04 h post-feeding) were increased by 44% in cows consuming the high cornstarch diet compared with cows consuming the high fiber diet. Cytochrome P450 2C activity was decreased by 45%, whereas CYP3A activity tended to be lowered by 34% in cows consuming the high cornstarch diet. Cytochrome P450 2C mRNA expression tended to be decreased by 21% in cows fed the high cornstarch diet, whereas CYP3A mRNA expression was not different between the dietary treatments. The fractional rate constant of progesterone decay was not different between the 2 diets; however, the half-life of progesterone tended to be longer in cows fed the high cornstarch diet compared with cows fed the high fiber diet (85 vs. 64 min, respectively). In summary, cows consuming the high cornstarch diet had increased insulin concentrations and lower hepatic CYP2C and CYP3A activity and tended to have a longer progesterone half-life compared with cows consuming the high fiber diet. Feeding diets that stimulate insulin secretion could alter progesterone clearance during lactation, when dairy cows have increased rates of progesterone inactivation because of high energy demands and increased DMI.  相似文献   

14.
Pregnant Holstein cows, 28 nulliparous and 51 parous, were blocked by parity and milk yield and randomly allocated to receive diets that differed in dietary cation-anion difference (DCAD), +130 or ?130 mEq/kg, and supplemented with either calcidiol or cholecalciferol at 3 mg/11 kg of dry matter from 255 d of gestation until parturition. Blood was sampled thrice weekly prepartum, and on d 0, 1, 2, 3, 6, 9, 12, 15, 18, 21, 24, 27, and 30 postpartum to evaluate effects of the diets on vitamin D, mineral and bone metabolism, and acid-base status. Blood pH and concentrations of minerals, vitamin D metabolites, and bone-related hormones were determined, as were mineral concentrations and losses in urine and colostrum. Supplementing with calcidiol increased plasma concentrations of 25-hydroxyvitamin D3, 3-epi 25-hydroxyvitamin D3, 25-hydroxyvitamin D2, 1,25-dihydroxyvitamin D3, and 24,25-dihydroxyvitamin D3 compared with supplementing with cholecalciferol. Cows fed the diet with negative DCAD had lesser concentrations of vitamin D metabolites before and after calving than cows fed the diet with positive DCAD, except for 25-hydroxyvitamin D2. Feeding the diet with negative DCAD induced a compensated metabolic acidosis that attenuated the decline in blood ionized Ca (iCa) and serum total Ca (tCa) around calving, particularly in parous cows, whereas cows fed the diet with positive DCAD and supplemented with calcidiol had the greatest 1,25-dihydroxyvitamin D3 concentrations and the lowest iCa and tCa concentrations on d 1 and 2 postpartum. The acidogenic diet or calcidiol markedly increased urinary losses of tCa and tMg, and feeding calcidiol tended to increase colostrum yield and increased losses of tCa and tMg in colostrum. Cows fed the diet with negative DCAD had increased concentrations of serotonin and C-terminal telopeptide of type 1 collagen prepartum compared with cows fed the diet with positive DCAD. Concentrations of undercarboxylated and carboxylated osteocalcin and those of adiponectin did not differ with treatment. These results provide evidence that dietary manipulations can induce metabolic adaptations that improve mineral homeostasis with the onset of lactation that might explain some of the improvements observed in health and production when cows are fed diets with negative DCAD or supplemented with calcidiol.  相似文献   

15.
Our objective was to determine the effects of varying dietary cation-anion differences (DCAD: meq[(Na + K) - (Cl + S)]/100 g of dry matter) in prepartum diets on Ca, energy, and endocrine status prepartum and postpartum. Holstein cows (n = 21) and heifers (n = 34) were fed diets with varying amounts of CaCl2, CaSO4, and MgSO4 to achieve a DCAD of +15 (control), 0, or -15 meq/100 g of dry matter for the last 24 d before expected calving. Dietary Ca concentration was increased (by CaCO3 supplementation) with decreasing DCAD. Plasma ionized Ca concentrations prepartum and at calving in both cows and heifers increased with reduced DCAD in the diet. At calving, plasma ionized Ca concentration was 3.67, 3.85, and 4.35 for cows and 4.44, 4.57, and 4.62 mg/dl for heifers fed diets containing +15, 0, and -15 DCAD, respectively. All heifers had normal concentrations of plasma ionized Ca (>4 mg/dl) at calving. Also at calving, plasma concentrations ofparathyroid hormone and calcitriol were less in cows and heifers fed diets containing reduced DCAD, but the plasma concentration of hydroxyproline was not affected by diet. Prepartum dry matter intake, energy balance, and body weight gains were lower and concentration of liver triglyceride was higher for heifers but not cows fed the -15 DCAD diet. Also, nonesterified fatty acids the last week prepartum were positively correlated with liver triglyceride for heifers but not cows. Feeding of anionic salts plus CaCO3 to reduce DCAD to -15 and increase Ca in prepartum diets prevents hypocalcemia at calving in cows, but decreases prepartum dry matter intake and increases the concentration of liver triglyceride in heifers. That heifers maintained calcium homeostasis at calving regardless of diet but ate less when fed the -15 DCAD diet suggests that they should not be fed anionic salts before calving.  相似文献   

16.
The objective of this study was to determine the effects of feeding different supplemental sources of Ca and Mg in the peripartum period, and different dietary levels of Mg postpartum, on plasma mineral status, performance, and aspects of energy metabolism in transition dairy cows. Multiparous Holstein cows (n = 41) were used in a completely randomized design with a 2 × 2 factorial arrangement of treatments starting at 28 d before expected parturition. Main effects were source assignments (CS = common sources of supplemental Ca and Mg, or MA = a blend of common and commercial mineral sources with supplemental minerals primarily from a commercial Ca-Mg dolomite source; MIN-AD, Papillon Agricultural Company Inc., Easton, MD) beginning at 21 d before due date; cows were further randomized within source treatments to 1 of 2 levels of Mg supplementation (LM = formulated postpartum diet Mg at 0.30% of dry matter (DM), or HM = formulated postpartum diet Mg at 0.45% of DM) beginning within 1 d after parturition. Final treatment groups included the following: common source, low Mg (CS-LM, n = 11); common source, high Mg (CS-HM, n = 11); MIN-AD, low Mg (MA-LM, n = 10); and MIN-AD, high Mg (MA-HM, n = 9). Treatment diets were fed and data collected through 42 d in milk. Postpartum plasma Mg concentrations tended to be higher for cows fed HM and cows fed CS, but no effects were observed on peripartum plasma Ca concentrations. Peripartum plasma P concentrations were higher for cows fed MA. Dry matter intake (DMI) in the prepartum period was higher for cows fed MA (CS = 15.9 vs. MA = 16.8 kg/d) and postpartum DMI was higher in some groups depending on week. Plasma nonesterified fatty acid concentrations were lower for cows fed MA during both the prepartum and postpartum periods. A source by level interaction was observed for postpartum plasma β-hydroxybutyrate (BHB) concentrations such that cows fed CS-LM had numerically higher BHB and cows fed MA-LM had numerically lower BHB (geometric means; CS-LM = 7.9, CS-HM = 6.9, MA-LM = 6.3, and MA-HM = 7.3 mg/dL) than cows fed the other 2 treatments. Higher milk fat yield, milk fat content, and fat- and energy-corrected yield during wk 1 for cows fed MA resulted in source by week interactions for these outcomes. This study demonstrated that varying supplemental Ca and Mg sources and feeding rates had minimal effect on plasma Ca status despite differences in plasma Mg and P concentrations. Effects on DMI and plasma energy metabolites suggest an opportunity for strategic use of mineral sources in the transition period to promote metabolic health.  相似文献   

17.
《Journal of dairy science》2023,106(6):3975-3983
The objectives of this study were to determine the dry matter intake (DMI), urine pH, Ca concentration in blood, Ca output in urine, and frequency of hypocalcemia in pregnant and nonlactating dairy cows consuming diets containing different hays and acidogenic products during the prepartum period. Eighty pregnant and nonlactating Holstein cows approaching their second or greater calving were fed 1 of 4 experimental diets according to a 2 × 2 factorial arrangement of treatments during the prepartum period (21 d before calving). Diets included either grass hay (GH) or alfalfa hay (AH) and calcium chloride (CL) or polyhalite (PO) as the acidogenic products. All diets had a dietary cation-anion difference (DCAD) below −190 mEq/kg of dry matter (DM). Grass hay contained 75 g/kg crude protein, 749 g/kg neutral detergent fiber, 3.6 g/kg Ca, 0.9 g/kg Na, 18.8 g/kg K, 3.8 g/kg Cl, 1.5 g/kg S, and a cation-anion difference equal to 290 mEq/kg of DM. Alfalfa hay contained 196 g/kg crude protein, 456 g/kg neutral detergent fiber, 15.2 g/kg Ca, 1.6 g/kg Na, 25 g/kg K, 7.7 g/kg Cl, 3.2 g/kg S, and a cation-anion difference equal to 292 mEq/kg of DM. Cows consuming GH tended to consume more DM than cows consuming AH (11.6 vs. 10.8 kg/d) but DMI did not differ between acidogenic products. Urine pH decreased below 6.5 for all diets, although cows consuming the GHPO diet had the highest urine pH. The concentration of Ca in plasma decreased substantially around calving but neither hay type nor acidogenic product affected it. Urinary Ca output was lowest for cows consuming the GHPO diet. No associations existed between dietary treatments and the frequencies of normocalcemia and hypocalcemia. Under the conditions of this study, in which alfalfa and grass hays had similar cation-anion differences, we concluded that the inclusion of alfalfa hay in prepartum diets does not necessarily increase the frequency of hypocalcemia. The cation-anion difference of the alfalfa hay, more than the concentration of potassium alone, may be a key determinant of whether alfalfa hay fits in a prepartum feeding program for prepartum dairy cows. Further research should explore this relationship.  相似文献   

18.
Most studies demonstrating that diets with low dietary cation-anion difference (DCAD) reduce hypocalcemia in cows add enough anions to the diet to reduce urine pH below 7.0. One objective of these experiments was to determine whether there is any benefit to periparturient plasma Ca concentration if diet anion addition results in a lesser degree of acidification of the cow and urine pH does not go below 7.0. Another method for reducing hypocalcemia involves feeding a prepartal diet that is Ca deficient. This places the cow in negative Ca balance before calving, stimulating parathyroid hormone (PTH) and 1,25-dihydroxyvitamin D secretion before calving and thus promoting Ca homeostasis at calving. As practiced in the field, low-Ca diets are often about 0.5% Ca. Our second objective was to determine whether a 0.46% Ca diet would be sufficiently low in Ca to stimulate PTH secretion before calving. A meta-analysis of the literature suggests that a 0.5% Ca, low-DCAD diet will reduce hypocalcemia better than a 0.7% Ca diet. A third objective was to compare periparturient plasma Ca in cows fed 0.46 or 0.72% Ca diets with similar DCAD. In experiment 1, anions (primarily chloride) or anions plus Ca were added to a 1.4% K basal diet to create the following diets: 0.46% Ca and +167 mEq/kg of DCAD, 0.46% Ca and ?13 mEq/kg of DCAD, and 0.72% Ca and ?17 mEq/kg of DCAD. In experiment 2, the same amounts of anion were added to a 2.05% K basal diet to create the following diets: 0.46% Ca and +327 mEq/kg of DCAD, 0.46% Ca and +146 mEq/kg of DCAD, and 0.72% Ca and +140 mEq/kg of DCAD. In experiment 1, cows fed the diet with 0.46% Ca and +167 mEq/kg of DCAD had significantly lower plasma Ca concentration after calving than cows fed the 0.46 or 0.72% Ca diets with anions. Periparturient plasma Ca concentrations did not differ in cows fed the low-DCAD diets with 0.46 or 0.72% Ca. Urine pH was reduced from 8.27 in the diet with 0.46% Ca and +167 mEq/kg of DCAD to 7.07 and 7.41 in the 0.46 and 0.72% Ca anion diets, respectively. Precalving plasma PTH and 1,25-dihydroxyvitamin D concentrations were similar in cows fed the 0.46% Ca diets and the 0.72% Ca diets, suggesting that the 0.46% Ca diets were not low enough in Ca to place the cow in negative Ca balance before calving. In experiment 2, adding the anion supplements to a 2.05% K diet did not reduce urine pH below 8.0. Periparturient plasma Ca concentrations did not differ in cows in any group in experiment 2. Precalving diets that are 0.46% Ca fed ad libitum are too high in Ca to stimulate Ca homeostasis before calving. Adding anions to a diet can benefit periparturient cow plasma Ca concentration, but only if it alters acid–base status enough to reduce urine pH below 7.5.  相似文献   

19.
Our objective was to compare the effects of different prepartum dietary phosphorus concentrations on periparturient metabolism and performance. Forty-two late pregnant multiparous Holstein cows were fed 0.21, 0.31, or 0.44% P (dry basis) for 4 wk before expected calving. After parturition, all cows were fed a common lactation diet (0.40% P). In the prepartum period, cows fed 0.21% P had lower blood serum P concentrations compared with cows fed 0.31 or 0.44% P. However, serum P concentrations of all cows were within the normal range (4 to 8 mg/dL) until the day of calving when average concentrations dropped below 4 mg/dL. From 3 to 14 d postpartum, serum P of cows fed 0.21% P was greater than that of cows fed 0.31 or 0.44% P. No cows presented with or were treated for clinical hypophosphatemia in the periparturient period. Total serum Ca was lower before calving through 2 d postpartum for cows fed 0.44% P compared with those fed 0.21 or 0.31%. Prepartum dietary P treatments did not alter blood osteocalcin, hydroxyproline, and deoxypyridinoline, indicators of bone metabolism, or concentrations of parathyroid hormone or 1,25-dihydroxyvitamin D3. Energy-corrected milk yield and milk composition (first 28 d of lactation) were not affected by prepartum dietary P concentrations. It is concluded that feeding 0.21% P (34 g of P/cow daily) prepartum is adequate for periparturient multiparous Holstein cows with high metabolic demands and genetic potential for milk production. No adverse effects on periparturient health, dry matter intake, or 28-d lactation performance resulted.  相似文献   

20.
Forty-eight Holstein cows were fed one of four diets containing 12.5% crude protein (negative control); 15.5% crude protein with untreated soybean meal; 15.5% crude protein with formaldehyde (.3%)-treated soybean meal; or 18% crude protein (positive control). Diets were 60% concentrate, 22% corn silage, 14% alfalfa hay, and 4% beet pulp (dry matter). Data were collected during the first 200 d of lactation. Dry matter intake, milk, and milk component yields did not differ among cows fed the untreated soybean meal, treated soybean meal, and positive control diets. Cows fed negative control diet consumed less dry matter and produced less milk than cows fed the other diets. Milk protein yield was lower for cows fed the negative control diet compared with the other diets. Nonprotein nitrogen content of milk increased as dietary protein increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号