首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An 8-bit resolution ultrahigh-speed monolithic digital-to-analog converter (DAC) is fabricated using super self-aligned process technology. In order to improve dynamic accuracy, which is determined by settling speed, clock feedthrough noise, and glitch, a number of circuit technologies are developed including a rise- and fall-time control switch driver, a low-noise flip-flop, and a differential buffer configuration. In addition, a chip assembly technology using a multilayer ceramic substrate is developed. The DAC exhibits a settling time to 8-bit accuracy of about 2 ns, a maximum conversion rate of 1 GHz, a glitch energy of 2 ps-V, and a 10-bit linearity error accuracy without trimming  相似文献   

2.
A low-voltage D/A converter using multi-input floating-gate MOSFET within a matrix current cell architecture is described in this paper. The two-input floating-gate p-channel MOSFET of each current cell performs the combined functions of current source and current switch. The double-gate-driven MOSFET circuit technique was employed in the digital circuitry to facilitate low supply voltage operation. A 6-bit and 8-bit digital-to-analog converter (DAC) have been fabricated in standard double-poly double-metal 1.2 μm CMOS technology. Measurements show a supply voltage as low as 0.9 and 1.0 V is sufficient to operate the 6-bit and 8-bit DAC, respectively, with a 5 Msamples/s conversion rate  相似文献   

3.
An 8-bit parallel DAC with a segmented architecture that employs a 4-bit binary and an unary segments is presented. A switched current source and a thermometric decoder are discussed. A test chip is fabricated using a 180-nm CMOS technology. Measured results show higher conversion rate and smaller chip area in comparison with other papers.  相似文献   

4.
Describes a monolithic, fully parallel 5-bit A/D converter. The chip is fabricated using a standard metal-gate enhancement depletion NMOS technology with 7 /spl mu/m minimum features. The chip contains 31 strobed comparators, latches, combinational logic, a 5/spl times/31 bit ROM, TTL buffers and a 4-bit DAC. This makes it a building block for two-step parallel 8-bit A/D converters. Maximum conversion rate is 20 MHz and DC linearity is better than /SUP 1///SUB 4/ LSB for 80 mV quantization step size.  相似文献   

5.
Describes a monolithic 14-bit DAC which uses a new compensation technique for the DAC linearity, the `self-compensation technique', originated through a new concept. Since this technique automatically compensates for linearity error in the DAC by referring to a ramp function with about 17-bit linearity, a high precision DAC can be produced in monolithic form without the trimming of analog components. An experimental 14-bit DAC chip has been fabricated using analog compatible IIL technology and two-level metalization. A linearity error of less that /spl plusmn/1/2 LSB and a settling time of 1-2 /spl mu/s has been achieved.  相似文献   

6.
A low glitch 10-bit 75-MHz CMOS video D/A converter   总被引:1,自引:0,他引:1  
A low glitch 10-bit 75-MHz CMOS current-output video digital-to-analog Converter (DAC) for high-definition television (HDTV) applications is described. In order to achieve monotonicity and low glitch, a special segmented antisymmetric switching sequence and an innovative asymmetrical switching buffer have been used. The video DAC has been fabricated by using 0.8 μm single-poly double-metal CMOS technology. Experimental results indicated that the conversion rate is above 75 MHz, and nearly 50% of samples have differential and integral linearity errors less than 0.24 LSB and 0.6 LSB, respectively. The glitch has been reduced to be less than 3.9 pV·s and the settling time within ±0.1% of the final value is less than 13 ns. The video DAC is operated by a single 5 V power supply and dissipates 1.70 mW at 75 MHz conversion rate (140 mW in the DAC portion). The chip size of video DAC is 1.75 mm×1.2 mm (1.75 mm×0.7 mm for the DAC portion)  相似文献   

7.
本文简要介绍了目前国际上GaAs超高速D/A转换器的研制情况。在详细分析了几种常用类型D/A转换电路工作原理的基础上,结合现有GaAs VHSIC的制作工艺条件,设计并制作了一种4位单片集成GaAs MESFET D/A转换电路。测试结果表明,该电路分辨率为4位,转换速率办1Gs/s,建立时间小于1.0ns,微分线性误差小于±1/2LSB,功耗约为20mW。  相似文献   

8.
介绍了一种高速7位DAC的设计及芯片测试结果,该DAC选取高5位单位电流源,低2位二进制电流源的分段结构。考虑了电流源匹配、毛刺降低以及版图中误差补偿等方面的问题来优化电路。流片采用0.35μmChartered双层多晶四层金属工艺,测试结果表明在20 MH z的采样频率下,微分非线性度和积分非线性度分别小于±0.2 LSB和±0.35 LSB。该DAC的满幅建立时间是20 ns,芯片面积为0.17 mm×0.23 mm。电源电压为3.3 V,功耗为3 mW。  相似文献   

9.
Describes a fully monolithic 16-bit digital-analog converter (DAC) which is fabricated with dielectric isolation and thin film nichrome resistors. The design uses a straightforward extension of techniques successfully used in lower resolution DACs. To achieve the greater accuracy needed for a 16-bit DAC, special layout techniques are used. An auxiliary R-2R ladder is introduced to provide a ground current cancellation scheme. The experimental results show that 16-bit resolution is possible with a typical settling time of 1 /spl mu/s. Improved performance over a temperature range of 0/spl deg/C-75/spl deg/C is observed with units exhibiting one-half an LSB differential and integral linearity of 14-bit resolution. The initial 16-bit accuracy approaches that of expensive hybrid modules, while the accuracy over wide temperature ranges surpasses anything presently reported.  相似文献   

10.
An 8-bit 100-MHz CMOS linear interpolation digital-to-analog converter (DAC) is presented. It applies a time-interleaved structure on an 8-bit binary-weighted DAC, using 16 evenly skewed clocks generated by a voltage-controlled delay line to realize the linear interpolation function. The linear interpolation increases the attenuation of the DAC's image components. The requirement for the analog reconstruction filter is, therefore, greatly relaxed. The DAC aims for the single-chip integration of a wireless transmitter. The chip was fabricated in a 3.3-V 0.35-/spl mu/m double-poly triple-metal CMOS process. The core size of the chip is 0.67 mm /spl times/ 0.67 mm, and the total power consumption is 54.5 mW with 3.3-V power supplies. The attenuation (in decibels) of image components is doubled compared with a conventional DAC.  相似文献   

11.
This paper presents a direct digital frequency synthesizer (DDFS) with a 16-bit accumulator, a fourth-order phase domain single-stage /spl Delta//spl Sigma/ interpolator, and a 300-MS/s 12-bit current-steering DAC based on the Q/sup 2/ Random Walk switching scheme. The /spl Delta//spl Sigma/ interpolator is used to reduce the phase truncation error and the ROM size. The implemented fourth-order single-stage /spl Delta//spl Sigma/ noise shaper reduces the effective phase bits by four and reduces the ROM size by 16 times. The DDFS prototype is fabricated in a 0.35-/spl mu/m CMOS technology with active area of 1.11mm/sup 2/ including a 12-bit DAC. The measured DDFS spurious-free dynamic range (SFDR) is greater than 78 dB using a reduced ROM with 8-bit phase, 12-bit amplitude resolution and a size of 0.09 mm/sup 2/. The total power consumption of the DDFS is 200mW with a 3.3-V power supply.  相似文献   

12.
A 12-bit nonlinear digital-to-analog converter (DAC) was fabricated in a 0.35-$mu$m SOI CMOS process. The nonlinear DAC can implement a piecewise-linear approximation to a sine function and results in significant reduction of complexity and power dissipation when used in direct digital frequency synthesizers (DDFSs). The DDFS look-up table only needs to store offset and gain values for each segment. The look-up table size can be reduced from 11K bits to 544 bits for a 12-bit DDFS with 72 dB spurious-free dynamic range (SFDR). The nonlinear DAC consists of a 12-bit binary-weighted offset DAC and a multiplying DAC. The DACs use a current steering architecture for high-speed operation and the 5 most significant bits of the offset DAC are unary encoded to reduce glitches. The multiplying DAC consists of binary-weighted current sources switched by the partial products of the inputs. Test results show that the DAC has 12-bit accuracy after digital trimming, operates up to 600 MS/s and provides differential outputs of 0.5 V into 50 $Omega$ loads. The SFDR is over 60 dBc below 20 MHz with a maximum of 72 dBc. Radiation tests show the nonlinear DAC can tolerate a total ionizing dose of 200 Krad Si.   相似文献   

13.
《Microelectronics Journal》2015,46(9):848-859
The Column-Parallel Overlapping-Subrange Successive-Approximation-Register Analog-to-Digital Converter (CPOSSAR ADC) uses a 5-bit split capacitor DAC twice to achieve 9-bit resolution. Its total capacitor area is only 3% of a 9-bit binary weighted DAC and the average switching power is only 12% of a conventional 9-bit DAC. The ADC can perform a 9-bit conversion by first digitizing the 4 most significant bits (MSB) in a coarse conversion stage and then digitizing the 5 least significant bits (LSB) in a fine conversion stage. The accuracy requirement of the DAC is reduced by using overlapping subranges. The proposed ADC achieved an SFDR of 73.6 dB and a SINAD of 55 dB in post-layout simulation, corresponding to an ENOB of 8.8 bits. The design was fabricated in a TSMC׳s 0.35 μm high-voltage process. The use of overlapping subranges reduced the DNL error from +5.14/−1 LSB to +1.27/−0.92 LSB, and improved the INL error from +5.35/−5.34 LSB to +3.17/−3.18 LSB. At a sampling rate of 1.1 MS/s the ADC achieved 41.5 dB SFDR, 34.2 dB SINAD, and consumed 242 μW/channel dynamic power. An individual ADC channel is only 22 μm wide. COPSSAR ADCs are a factor of 4, 2, and 2.5 more area efficient than Multiple-ramp Single-slope ADCs, SAR ADCs, and Cyclic ADCs.  相似文献   

14.
This paper describes a 10-b high-speed COMS DAC fabricated by 0.8-μm double-poly double-metal CMOS technology. In the DAC, a new current source called the threshold-voltage compensated current source is used in the two-stage current array to reduce the linearity error caused by inevitable current variations of the current sources. In the two-stage weighted current array, only 32 master and 32 slave unit current sources are required. Thus silicon area and stray capacitance can be reduced significantly. Experimental results show that a conversion rate of 125 MHz is achievable with differential and integral linearity errors of 0.21 LSB and 0.23 LSB, respectively. The power consumption is 150 mW for a single 5-V power supply. The rise/fall time is 3 ns and the full-scale settling time to ±1/2 LSB is within 8 ns. The chip area is 1.8 mm×1.0 mm  相似文献   

15.
A new low voltage digital-to-analog conversion (DAC) architecture is proposed using weighted summation of voltages at the input terminals of a Floating Gate MOSFET (FGMOS). An 8-bit DAC has been designed based on this architecture and its simulation results are provided to verify its operation at ±1.0 V. The circuit possesses good accuracy, fast dynamic performance and low power consumption. The circuit operation was verified through SPICE simulations carried out using 0.13 μm CMOS technology.  相似文献   

16.
A new single-chip 16-bit monolithic digital/analog converter (DAC) with on-chip voltage reference and operational amplifiers has achieved /spl plusmn/0.0015% linearity, 10 ppm//spl deg/C gain drift, and 4-/spl mu/s settling time. Novel elements of the 16-bit DAC include: the fast settling open-loop reference with a buried Zener, a fast-settling output operational amplifier without the use of feedforward compensation, and a modified R-2R ladder network. Thermal considerations played a significant role in the design. The DAC is fabricated using a 20-V process to reduce device sizes and therefore die size. All laser trimming including temperature drift compensation is performed at the wafer level. The converter does not require external components for operation.  相似文献   

17.
A new dynamic element matching (DEM) algorithm, referred to as rotated data weighted averaging (RDWA), is implemented in a third-order ΣΔ digital-to-analog converter (DAC) with 64× oversampling and a conversion bandwidth of 25 kHz. The systematic and random errors are considered in the design of the 14-bit converter. The ΣΔ DAC is fabricated in a 2-μm CMOS process and includes the on-chip reconstruction filter. The prototype was designed to test the performance of the DAC without DEM, with data weighted averaging (DWA), and with RDWA. The results show that the new RDWA algorithm is capable of achieving first-order noise shaping while eliminating the signal-dependent harmonic distortion present in DWA  相似文献   

18.
A gate recess process for a 0.5-μm I-HEMT (inverted high electron mobility transistor) has been developed. A drain conductance for the 0.5-μm I-HEMT as small as 2 mS/mm was achieved, indicating a small short-channel effect. The threshold voltage uniformities were studied in microscopic and macroscopic areas in a 2-in wafer. The uniformities are very high, i.e. the standard deviations of microscopic and macroscopic areas are 10 and 30 mV, respectively, at a threshold voltage of 0.1 V. An 8×4 parallel multiplier was fabricated, and a multiplication time of 1.67 ns was obtained at room temperature. An 8-b digital/analog converter (DAC) was fabricated and operated at a clock rate of 1.2 GHz. The DC linearity of the DAC is better than 0.18 LSB. These results confirm that an I-HEMT is very well suited for high-speed integrated circuits  相似文献   

19.
Describes a single-chip full duplex per channel PCM codec implemented in a metal gate CMOS process. An 8-bit companding DAC, a novel autozeroed analog subsystem, and a 3.5-MHz frame interface control logic comprise the 175/spl times/195-mil integrated circuit. The DAC is implemented with matched n channel devices and utilizes redundancy and feedback to achieve the required accuracy. The analog subsystem contains two sample and hold circuits, autozeroing circuitry, CMOS amplifiers, and a fast CMOS comparator.  相似文献   

20.
叶波  李天望  罗敏 《电子学报》2009,37(8):1789-1793
 提出了一种回声消除和噪声抑制算法,采用改进的自适应步长非线性滤波技术,用单芯片对该算法进行了实现.用180nm 3.3V/1.8V 6层金属混合信号CMOS工艺流片,可达70dB的声学回声消除性能,噪音消除达20dB,侧音消除达30dB.该芯片包含1个16位DSP、3个14位Σ-Δ ADC、2个16位Σ-Δ DAC、 以及内置ROM和RAM等,并集成有USB、UART、I2C和PCM等接口.测试结果表明该芯片具有全双工和远距离免提的功能,支持双路麦克风输入,技术规范符合G.165国际标准.该芯片功耗低,外围电路简单,自适应能力强,可广泛应用于蓝牙车载免提通信、GPS和即时通讯等领域.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号