首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the bovine spongiform encephalopathy crisis, there has been a growing interest for finding an alternative source of raw materials for gelatin production. Gelatin produced from fish processing by-products is a potential alternative to mammalian gelatin. Fish processing generates solid wastes that can be as high as 50–80% of the original raw material. These wastes are an excellent raw material for preparation of high protein foods. About 30% of the wastes consists of skin and bone with a high collagen content. Fish gelatin can be obtained by hydrolysis of collagen the principal protein found in skin and bone. Fish skin and bone gelatin can be prepared with bloom strength similar to that obtained from mammalian sources. Fish gelatin has numerous applications, particularly, in the food, pharmaceutical, and photographic industries due to its unique chemical and physical properties. This review presents how fish processing by-products can be utilized in the manufacture of gelatin.  相似文献   

2.
Mammalian gelatin is extensively utilized in the food industry because of its physicochemical properties. However, its usage is restricted and essentially prohibited for religious people. Fish gelatin is a promising alternative with no religious and social restrictions. The desirable properties of fish gelatin can be significantly improved by various methods, such as the addition of active compounds, enzymes, and natural crosslinking agents (e.g., plant phenolics and genipin), and nonthermal physical treatments (e.g., ionizing radiation and high pressure). The aim of this study was to explore whether the properties of fish gelatin (gel strength, melting or gelling temperature, odor, viscosity, sensory properties, film-forming ability, etc.) could be improved to make it comparable to mammalian gelatin. The structure and properties of gelatins obtained from mammalian and fish sources are summarized. Moreover, the modification methods used to ameliorate the properties of fish gelatin, including rheological (gelling temperature from 13–19°C to 23–25°C), physicochemical (gel strengths from ∼200 to 250 g), and thermal properties (melting points from ∼25 to 30°C), are comprehensively discussed. The relevant literature reviewed and the technological advancements in the industry can propel the development of fish gelatin as a potential alternative to mammalian gelatin, thereby expanding its competitive market share with increasing utility.  相似文献   

3.
鱼骨利用的研究现状   总被引:3,自引:0,他引:3  
鱼骨是鱼类加工业的下脚料,可将其深加工利用。鱼骨主要由灰分、蛋白质、水分及脂肪组成。灰分中钙、磷的含量最高。研究表明,鱼骨能用于制作多种食品及调味料,提取胶原蛋白、软骨素、寡聚肽、蛋白质及骨油,鱼骨还可用于废水处理及制取CMC活性钙。  相似文献   

4.
The fish processing industry produces more than 60% by-products as waste, which includes skin, head, viscera, trimmings, liver, frames, bones, and roes. These by-product wastes contain good amount of protein rich material that are normally processed into low market-value products, such as animal feed, fish meal and fertilizer. In view of utilizing these fish industry wastes, and for increasing the value to several underutilised fish species, protein hydrolysates from fish proteins are being prepared by several researchers all over the world. Fish protein hydrolysates are breakdown products of enzymatic conversion of fish proteins into smaller peptides, which normally contain 2–20 amino acids. In recent years, fish protein hydrolysates have attracted much attention of food biotechnologists due to the availability of large quantities of raw material for the process, and presence of high protein content with good amino acid balance and bioactive peptides (antioxidant, antihypertensive, immunomodulatory and antimicrobial peptides).  相似文献   

5.
Optimization of Gelatin Extraction from Silver Carp Skin   总被引:1,自引:0,他引:1  
ABSTRACT:  Fish skins are a by-product of the fish processing industry that can be successfully processed into gelatin. This study was designed to optimize the extraction process to obtain the highest yield, gel strength, and viscosity for gelatin production from silver carp skin. A fractional factorial design (2 levels, resolution III, 29-5) was chosen to screen 9 parameters to determine the most significant ones. Those found to be significant were optimized to determine the maximum value for 3 dependent variables mentioned above. The hydroxyproline content and hydroxyproline/protein ratio of the skin were 1.7% and 6.5%, respectively. The protein content of the skin was 26%. The hydroxyproline content of the gelatin for the sample giving the highest hydroxyproline/protein ratio was 10.9%. This sample was arbitrarily called pure gelatin and the purity of the remaining samples was between 71.8% and 97%. The highest protein and gelatin recovery was 78.1% and 98.8% of the total available, respectively. The latter, gelatin recovery, is proposed to be used instead of protein yield. Four variables were determined as significant in screening and these variables were studied by a central composite rotatable design (4-factor and 5-level with 6 central points) to model the system and response surface methodology was used for optimization. The optimum extraction conditions were 50 °C for the extraction temperature, 0.1 N HCl for the acid concentration, 45 min for the acid pretreatment time, and finally 4 : 1 (v/w) for the water/skin ratio. The predicted responses for these extraction conditions were 630 g gel strength, 6.3 cP viscosity, and 80.8% gelatin recovery. The data suggest that silver carp skin gelatin is similar to those of fish gelatins currently being exploited commercially.  相似文献   

6.
Abstract: Fish skin gelatin was hydrolyzed with papain to produce antioxidant peptides. Response surface methodology (RSM) was applied to optimize the hydrolysis conditions (including enzyme to substrate ratio [E/S], hydrolysis time, and temperature). The highest degree of hydrolysis (DH) (50.1 ± 1.1%) was obtained at an E/S of 2% at 56.8 °C, 2.11 h, and was not significantly different from the predicted values within a 95% confidence interval. The highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) (96.8 ± 0.9%) and 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS•+) (9.80 ± 0.11 mM Trolox [6-hydroxy-2,5,7,8-tetramethychroman-2-carboxylic acid]) radical-scavenging activities of fish gelatin hydrolyzates were obtained at an E/S of 3% at 52.1 °C, 2.65 h, and both DPPH and ABTS•+ radical-scavenging activities were not significantly different from the predicted values 97.3% and 9.86 mM Trolox within the 95% confidence interval. Therefore, RSM is an efficient way to optimize fish gelatin hydrolysation and the resultant hydrolyzates show promise as antioxidant peptides. Practical Application: There is a growing interest in the use of fish gelatin as an alternative to mammalian gelatin. One potential use is as a source of widely acceptable functional compounds. In this study, a search for antioxidant peptides from fish gelatin prepared by an enzymatic method has been successfully done. This suggests that this is a practical way to obtain bioactive peptides.  相似文献   

7.
ABSTRACT:  Farm-raised catfish are important to the economy of the southeastern states in the United States, and catfish processing produces about 55% of by-products for inexpensive sale. Therefore, the utilization of catfish by-products is of great interest to the catfish industry. The objectives of this research were to determine the optimum pretreatment method to extract catfish gelatin for edible film application, and to characterize physical, mechanical, and barrier properties of edible films fabricated with catfish skin gelatin. Catfish skins obtained from a local plant were treated with 6 selected pretreatment methods. The main extraction was performed with deionized water at 50 °C after pretreatment. The gelatin yield was calculated and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed to characterize molecular weight (MW) profile. Color, tensile strength (TS), elongation, and water barrier property were determined to characterize the fabricated catfish gelatin films. From the results of gelatin yield, color, SDS-PAGE, as well as mechanical and barrier properties of the film, the pretreatment method with 0.25 M NaOH and 0.09 M acetic acid, followed by extraction at 50 °C for 3 h, was determined as the optimum extraction method. The catfish gelatin exhibited higher MW fractions than commercial mammalian gelatin. The catfish gelatin extracts possessed film-forming properties determined by TS, elongation, and water vapor permeability (WVP) comparable to those of commercial mammalian gelatin. The selected formula for catfish gelatin film was determined as 1% gelatin and 20% glycerol, resulting in greatest TS and lowest WVP.  相似文献   

8.
Abstract: Fish gelatin is a potential alternative to mammalian gelatin. However, poor gel strength and low melting point limit its applications. The study was aimed at improving these properties by adding coenhancers in the range obtained from response surface methodology (RSM) by using Box–Behnken design. Three different coenhancers, MgSO4, sucrose, and transglutaminase were used as the independent variables for improving the gel strength and melting point of gelatin extracted from Tiger‐toothed croaker (Otolithes ruber). Addition of coenhancers at different combinations resulted gel strength and melting point in the range of 150.5 to 240.5 g and 19.5 to 22.5 °C, respectively. The optimal concentrations of coenhancers for predicted maximum gel strength (242.8 g) obtained by RSM were 0.23 M MgSO4, 12.60% sucrose (w/v), and 5.92 mg/g transglutaminase and for predicted maximum melting point (22.57 °C), the values were 0.24M MgSO4, 10.44% sucrose (w/v), and 5.72 mg/g transglutaminase. By addition of coenhancers at these optimal concentrations in verification experiments, the gel strength and melting point were improved from 170 to 240.89 g and 20.3 to 22.7 °C, respectively. These experimental values agreed well with the predicted values demonstrating the fitness of the models. Results from the present study clearly revealed that the addition of coenhancers at a particular combination can improve the gel strength and melting point of fish gelatin to enhance its range of applications. Practical Application: There is a growing interest in the use of fish gelatin as an alternative to mammalian gelatin. However, poor gel strength and low melting point of fish gelatin have limited its commercial applications. The gel strength and melting point of fish gelatin can be increased by incorporation of coenhancers such as magnesium sulphate, sucrose, and transglutaminase. Results of this work help to produce the fish gelatin suitable for wide range of applications in the food industry.  相似文献   

9.
Water Vapor Permeability of Mammalian and Fish Gelatin Films   总被引:9,自引:0,他引:9  
R.J.  Avena-Bustillos  C.W.  Olsen  D.A.  Olson  B.  Chiou  E.  Yee  P.J.  Bechtel  T.H.  McHugh 《Journal of food science》2006,71(4):E202-E207
ABSTRACT:  Water vapor permeability of cold- and warm-water fish skin gelatins films was evaluated and compared with different types of mammalian gelatins. Alaskan pollock and salmon gelatins were extracted from frozen skins, others were obtained from commercial sources. Water vapor permeability of gelatin films was determined considering differences on percent relative humidity (%RH) at the film underside. Molecular weight distribution, amino acid composition, gel strength, viscoelastic properties, pH, and clarity were also determined for each gelatin. Water vapor permeability of cold-water fish gelatin films (0.93 gmm/m2hkPa) was significantly lower than warm-water fish and mammalian gelatin films (1.31 and 1.88 gmm/m2hkPa, respectively) at 25 °C, 0/80 %RH through 0.05-mm thickness films. This was related to increased hydrophobicity due to reduced amounts of proline and hydroxyproline in cold-water fish gelatins. As expected, gel strength and gel setting temperatures were lower for cold-water fish gelatin than either warm-water fish gelatins or mammalian gelatins. This study demonstrated significant differences in physical, chemical, and rheological properties between mammalian and fish gelatins. Lower water vapor permeability of fish gelatin films can be useful particularly for applications related to reducing water loss from encapsulated drugs and refrigerated or frozen food systems.  相似文献   

10.
The primary advantage of nanofibers over larger diameter fibers is the larger surface area to volume ratio. This study evaluated solution blow spinning (SBS) processing conditions for obtaining food‐grade gelatin nanofibers from mammalian and fishery byproducts, such as pork skin gelatins (PGs) and high molecular weight fish skin gelatin (HMWFG). HMWFG had a highest intact collagen structure compared to PGs. PGs with different Bloom values, solution viscosities, and surface tensions were compared with HMWFG for their ability to produce nanofibers through SBS. Only HMWFG fibers were obtained irrespective of processing conditions, which looked like fluffy cotton candy. HMWFG nanofibers had round morphologies with a narrower diameter distribution and lower average fiber diameter (AFD) under medium gelatin concentrations, medium air pressures, and medium feed rates. The highest glass transition temperature (Tg) values were obtained at medium concentrations, medium air pressure, and either high or low feed rate. The thinnest HMWFG nanofibers with an AFD of 80.1 nm and the highest Tg value of 59.0 °C could be formed by combining a concentration of 17.6% (w/v), an air pressure of 0.379 MPa, and a feed rate of 0.06 mL/min from the response surface analysis. HMWFG Brunauer, Emmett, and Teller surface area increased from 221 to 237 m2/g, indicating their potential applicability for active compound carrier.  相似文献   

11.
A large amount of food-grade animal by-products is annually produced during industrial processing and they are normally utilized as animal feed or other low-value purposes. These by-products are good sources of valuable proteins, including collagen or gelatin. The revalorization of collagen may lead to development of a high benefit-to-cost ratio. In this review, the major approaches for generation of collagen peptides with a wide variety of bioactivities were summarized, including antihypertensive, antioxidant and antidiabetic activities, and beneficial effects on bone, joint and skin health. The biological potentials of collagen peptides and their bioavailability were reviewed. Moreover, the unique advantages of collagen peptides over other therapeutic peptides were highlighted. In addition, the current challenges for development of collagen peptides as functional food ingredients were also discussed. This article discusses the opportunity to utilize collagen peptides as high value-added bio-functional ingredients in the food industry.  相似文献   

12.
ABSTRACT: Allergy to fish is a common cause of IgE‐mediated food allergic reactions especially in geographic regions where fish is an important dietary component. Fish allergy is estimated to affect 0.4% of the total population in the United States. All species of fish are believed to be allergenic, but allergic reactions to fish reported in the medical literature are most commonly caused by cod and salmon. The major allergen in fish is a naturally occurring muscle protein called parvalbumin. Some evidence exists of allergic reactions to other fish proteins including collagen. This review addresses fish allergy and fish‐derived ingredients, namely gelatin, isinglass, fish maws, ice‐structuring protein, fish oil, and Worcestershire sauce.  相似文献   

13.
D Kim  SC Min 《Journal of food science》2012,77(9):E240-E246
Edible biopolymer films were developed from gelatin extracted from trout skin (TSG) using thermal protein denaturation conditions and plasticizer (glycerol) concentration as variables. The amino acid composition of the TSG, elastic modulus, viscous modulus, and the viscosity of film-forming solutions, and tensile properties, water vapor permeability, solubility in water, and color of TSG-based films were determined. A 6.8% (w/w, wet basis) trout skin-extracted gelatin solution containing 9, 17, or 23% (w/w, dry basis) glycerol was heated at 80, 90, or 100 °C for 30, 45, or 60 min to prepare a film-forming solution. TSG can be characterized as a gelatin containing high contents of methionine and aspartic acid. The gelation temperature of the film-forming solution was 7 °C and the solution was subjected to heating to form a stable matrix for a film. Increased heating time of the film-forming solution reduced the film solubility (P < 0.05). Heating at 90 °C for 30 min was suggested as the requirement for film formation. As the concentration of glycerol in the film increased, film strength and moisture barrier properties decreased, while film stretchability increased (P < 0.05). Trout skin by-products can be used as a natural protein source for fabricating biopolymer films stable at ambient conditions with certain physical and moisture barrier properties by controlling thermal treatment conditions and glycerol concentrations. Practical Application: The fishing industry produces a significant amount of waste, including fish skin, due to fish processing. Trout skin waste has potential value as a protein source that can be used to form biopolymer edible films for packaging low and intermediate water activity food products, and thus may have practical applications in the food industry, which could be one way to cut waste disposal in the trout processing industry.  相似文献   

14.
Australasia has a large fish industry, and fish skin by-products from the processing industry could be used for the commercial production of fish collagen. The aim of this study was to characterize collagen extracted from the Asian sea bass (Australian barramundi) (Lates calcarifer) and snapper (Pagrus auratus) skin as an alternative to mammalian-derived collagen in gelatin products. The acid-soluble fractions of collagen from Asian sea bass and snapper skin were extracted and yielded about 8 and 7.5 % collagen (on a dry weight basis), respectively. The electrophoretic and chromatography patterns indicated that both collagens comprise of α1, α2, α3, and β chains, corresponding to the properties of calf skin collagen type I. Amino acid analysis and peptide mapping of digested collagen suggested differences in their amino acid sequences and collagen primary structure. Fourier transform infrared spectroscopy demonstrated that the helical structure of collagen was completely maintained in Asian sea bass and partially in snapper. Transition temperatures for the completion of the melting process in the two collagen networks were confirmed with differential scanning calorimetry and dynamic oscillatory rheology to be about 29 °C. Zeta potential analysis identified the isoelectric points (pI values) of collagen from Asian sea bass and snapper skin at pH 6.90 and 7.75, respectively. Thus, Asian sea bass and snapper skin could be an important alternative source of collagen to replace mammalian collagen for industrial applications.  相似文献   

15.
鱼皮胶原蛋白及胶原活性多肽的研究进展   总被引:1,自引:0,他引:1  
胶原蛋白是生物体内的重要蛋白质,是结缔组织的主要蛋白质成分。胶原蛋白具有多样性及组织分布的特异性,是与各种组织和器官功能相关的功能性蛋白质。鱼皮胶原蛋白及其酶解产物胶原活性多肽已引起人们的广泛关注。现对鱼皮胶原蛋白的种类、性质、提取方法以及胶原活性多肽生理活性等的研究进展作一综述。  相似文献   

16.
Effects of adding fish gelatin on Alaska pollock surimi gels   总被引:3,自引:0,他引:3  
Fish gelatin is a food additive obtained after hydrolysis of collagen from fish skin. The importance of fish gelatin as a food additive is increasing due to its increased commercial availability. Surimi is washed minced fish meat used as the raw material for seafood analogs like crabmeat substitutes. The most important attributes of surimi are gelling and whiteness. The objective of this work was to determine the effect of using fish gelatin as an additive in surimi to improve the mechanical and functional properties of gels. Surimi gels were prepared by mixing grade A or FA surimi (Alaska pollock) with salt (20 g/kg w/w) and commercial fish gelatin at 0 (control), 5, 7.5, 10, or 15 g/kg (w/w) previously dissolved in water (200 mL/kg surimi). The solubilized paste was incubated at 40 °C for 30 min followed by cooking at 90 °C for 15 min. Changes in mechanical properties (torsion test), a functional property (expressible water content) and color attributes of surimi gels were measured. Grade FA surimi gels containing 7.5–15 g/kg of fish gelatin showed an improved expressible moisture. However, gelatin added at 15 g/kg showed a disruptive effect detrimental to the mechanical properties. Color parameters were modified slightly. Whiteness attribute as affected by increasing the fish gelatin was instrumentally detected but not observed by sensory panelists. Gelatin did not change the overall color attributes and all gels remained in the grayish region. These results indicated that fish gelatin did not have an advantage for using as a functional additive in Alaska pollock surimi grades A or FA. However, it can be used at up to 10 g/kg without a negative effect on the mechanical properties.  相似文献   

17.
Gelatin was extracted from the skin of farmed giant catfish (GC) and tilapia (TP) at a yield of 19.50% and 23.34% (wet wt). It was high in protein (84–88%) but low in fat (0.09–1.24%) and ash content (0.15–0.17%). The GC exhibited lower emulsifying activity (24–35%), but greater foam ability (98–110%), water holding capacity (477–844%) and fat binding capacity (2541–3314%) than commercial beef skin gelatin (BF) (P < 0.05). GC and TP showed comparable functional properties to BF. SDS‐PAGE patterns of TP gelatin showed high band intensity for the α‐ and β‐components, while the lowest band intensity of the major component was found in the BF. From the study, it can be concluded that the farmed freshwater fish skin GC and TP is a prospective source for producing a significant gelatin yield with desirable functionalities. Because of these, fish skin gelatin could be more effectively and widely used in food industries as a good food ingredient.  相似文献   

18.
近年来,我国渔业迅速发展,随着鱼产量的增加,鱼类生产和加工过程中产生的副产物产量也逐年增加。这些副产物的综合利用水平极低,通常被当作下脚料直接丢弃,造成严重的资源浪费与环境污染。鱼类副产物主要包括鱼骨、鱼鳞等,它们的提取物丰富,具有潜在的功能价值和经济效益。为实现其高值化利用,本文论述了近年来鱼骨、鱼鳞的提取及利用的研究现状,旨在实现加工增值,同时为扩大其在各领域中的研究及应用范围提供参考。  相似文献   

19.
近年来,随着鱼类加工产量的增加,其加工产生的副产物也随之增多。鱼皮作为鱼类加工副产物之一,含有丰富的蛋白质、氨基酸、矿物质和不饱和脂肪酸等,具有较强的加工潜力,但目前能够将其进行加工的企业较少,通常是将鱼皮直接丢弃,这不仅造成大量的浪费,而且污染环境。本文梳理了鱼皮中的营养成分、胶原蛋白的提取方法以及已有的鱼皮加工制品,对鱼皮在食品、功能性产品、化妆品、医疗和服饰领域等不同方面的研究现状及应用概况进行综述,提出现阶段鱼皮加工应用领域中所存在的问题,并对未来鱼皮加工产品的走向和发展进行展望,以期为鱼类加工副产物的高值化利用提供参考依据,对优化和拓宽我国水产品副产物的研究领域和提升国家经济效益具有重要意义。  相似文献   

20.
姜艳敏  丁长河  庸菁喆 《食品工业》2021,(1):186-186,187-190
采用TPA质构分析的方法,研究不同来源明胶及其添加量对高、中、低3种面粉的面团质构特性的影响。结果表明,整体上鱼皮来源的明胶对面团的硬度、胶着性及咀嚼性等影响较大,牛皮和牛骨来源的明胶对面团的弹性、黏聚性及回复性等指标良好。其中,低筋粉未发酵面团鱼皮明胶的最适添加量为4%;中筋粉未发酵面团鱼皮明胶的最适添加量为1%;高筋粉未发酵面团牛皮和鱼皮2种明胶的最适添加量均为1%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号