首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of concentration of AgCF3SO3 salt on the behavior of ionic transport within the polymer electrolyte system containing the polymer host poly(propylene glycol) of molecular weight 4000 (PPG4000) has been investigated in terms of spectroscopic and electrochemical properties. It is evident that the presence of well-defined interactions between the ether oxygens and silver cations arising due to the complexation of the silver salt with the polymer matrix has enabled the chosen polymer electrolyte system to possess the maximum room temperature (298 K) electrical conductivity of 9.4 × 10?5 S cm?1 in the case of the typical composition having the ether oxygen-to-metal ratio (O:M) of 4:1 and the lowest activation energy E a of 0.46 eV for Ag+ ionic conduction.  相似文献   

2.
A series of phthalonitrile end-capped sulfonated polyarylene ether nitriles are synthesized via K2CO3 mediated nucleophilic aromatic substitution reaction at various molar ratios. The as-prepared polymer structures are confirmed by 1H NMR and FTIR spectroscopy. The properties of membranes cast from the corresponding polymers are investigated with respect to their structures. The membranes exhibit good thermal and mechanical properties, low methanol permeability (0.01?×?10?6–0.58?×?10?6 cm2·s?1 at 20 °C), and high proton conductivity (0.021–0.088 S·cm?1 at 20 °C). The introduction of phthalonitrile is proved to increase intermolecular interaction, mainly contributing to the reduction in water uptake, swelling ratio, and methanol permeability. More importantly, its introduction does not decrease the proton conductivity, but there is a slight increase. Furthermore, the selectivity of SPEN-CN-50 can reach 4.11?×?105 S·s·cm?3, which is about nine times higher than that of Nafion 117. All the data show that the as-prepared membranes may be potential proton exchange membrane for DMFCs applications.  相似文献   

3.
Polyvinylpyrrolidone (PVP) was used as organic intercalative modifier to prepare organophilic montorillonite OMMT-P. PPy/OMMT nanocomposites were prepared by the oxidative polymerization of pyrrole (Py) intercalated into the interlayer of OMMT. The effect of Py, OMMT, oxidant, and dopant content on nanocomposites' conductivity were studied, and the conductivity of PPy/OMMT-P was achieved as high as 15.0 S·cm?1 when the molar ratio of FeCl3 and Py is 2.50, the mass ratio of Py and OMMT-P is 0.25, and the TSANa concentration is 0.025 g·ml?1. The structure and properties of the nanocomposites are characterized with FT-IR, TG, and XRD.  相似文献   

4.
Novel sulfonated poly(ether ether ketone) (PEEK) copolymers were prepared using a low-viscosity grade PEEK powder. The TGA studies indicated that SPEEK membranes with up to 75% DS have enough thermal stability. The highest conductivity of 2.176 × 10?2 S cm?1 has been observed at 100°C for SP96 (DS = 72%). Compared to Nafion-15, SP72 exhibits much higher conductivity at all the temperatures considered. The water sorption experiments indicated that the maximum water uptake was 3.92% for SP24 and it was 60% for SP120. It was observed that the increase in the water content in a membrane caused a decrease in the diffusion coefficient.  相似文献   

5.
The effect of the number and size of polystyrene particles and the concentration of ammonium persulfate used as the initiator on the micellar crosslinking polymerization of acrylic acid was studied by real‐time monitoring of the storage modulus (G ′), the damping factor (tanδ), and the ratio of the complex modulus (G*) to the maximum G* (G*max) during 1 h of polymerization. The molar ratio (5.83 × 10?4) of N,N′‐methylenebis‐acrylamide to acrylic acid was fixed. Polystyrene particles were prepared by emulsifier‐free emulsion polymerization. The diameter of the particles ranged from 233 to 696 nm. The results show that crosslinking polymerization was most effective when 1.31 × 1012 particles were incorporated into the system, while crosslinking polymerization was less effective in the particle‐filled system than in the unfilled polymerization system if the particle number was 50% lower or higher. Crosslinking was also more effective with the use of uncrosslinked firmer and larger particles at the fixed particle number, except for the anomalous behavior observed with 696 nm polystyrene particles. Increasing the feed concentration of the initiator resulted in more efficient crosslinking up to a limiting concentration of 0.765 mg mL?1 (the molar ratio of initiator to monomer was 8.52 × 10?4). When this initiator concentration was doubled, the rate of increase of G ′ in the deceleration phase was slower after the network was formed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42851.  相似文献   

6.
Fluoroalkyl end‐capped copolymers containing glucosyl segments were prepared by the copolymerizations of fluoroalkanoyl peroxides with 2‐glucosyoxyethyl methacrylate (GEMA) and comonomers such as acrylic acid (ACA) and methacrylate monomer‐containing poly(oxyethylene) units (PME). Under the non‐cross‐linked conditions, fluoroalkyl end‐capped GEMA–ACA and GEMA–PME copolymers were found to cause a gelation in dimethyl sulfoxide (DMSO), where the aggregations of end‐capped fluoroalkyl segments and the hydrogen‐bonding interaction between hydroxyl segments are involved in establishing a physical gel network, although the corresponding nonfluorinated GEMA copolymers could cause no gelation in DMSO. More interestingly, it was demonstrated that these fluorinated polymeric gelling electrolytes containing lithium salts exhibit a considerably high ionic conductivity of 10?3 S/cm level at room temperature. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2833–2838, 2002  相似文献   

7.
While many attempts have been made in the recent past to improve the power conversion efficiencies of dye-sensitized solar cells (DSSCs), only a few reports can be found on the study of these cells using binary iodides in the gel polymer electrolyte. This paper reports the effect of using a binary mixture of (large and small cation) alkaline salts, in particular CsI and LiI, on the efficiency enhancement in DSSCs with gel polymer electrolytes. The electrolyte with the binary mixture of CsI:LiI = 1:1 (by weight) shows the highest ionic conductivity 2.9 × 10?3 S cm?1 at 25 °C. DC polarization measurements showed predominantly ionic behavior of the electrolyte. The density of charge carriers and mobility of mobile ions were calculated using a newly developed method. The temperature dependent behavior of the conductivity can be understood as due to an increase of both the density and mobility of charge carriers. The solar cell with only CsI as the iodide salt gave an energy conversion efficiency of ~3.9 % while it was ~3.6 % for the cell with only LiI. However, the electrolyte containing LiI:CsI with mass ratio 1:1 showed the highest solar cell performance with an energy conversion efficiency of ~4.8 % under the irradiation of one Sun highlighting the influence of the mixed cation on the performance of the cell. This is an efficiency enhancement of 23 %.  相似文献   

8.
A series of tertiary amine-based hyperbranched poly(amine-ester)s have been synthesized by Michael addition polymerization of trifunctional monomer, TMEA and difunctional monomer, diacylates in chloroform, and the resultant polymers were subsequently treated with mercaptoethenol or 1-dodecanethiol for improving stability in storage. The caption efficiency of mercaptoethanol is much better than that of 1-dodecanthiol. Kinetic study reveals that the thiol group is consumed faster than the acrylate group when the polymerization with feed molar ratio of diacrylate/TMEA = 2/1 was carried out. At initial polymerization, monomer conversion increases fast, but the molecular weights increase slowly and sharp increase of the molecular weight occurs at the final polymerization. The hyperbranched polymers were well characterized by 1H NMR spectra and TD-SEC, and DBs of the polymers obtained are between 0.6 and 0.82, as well as the molar ratios of diacrylate/TMEA in the hyperbranched polymers are between 1.60 and 1.82. The fluorescence efficiency and quantum yields of HypET20, HypHT24 and HypDT24 has the following sequence: HypET20 > HypHT24 > HypDT24.  相似文献   

9.
Polymer gel electrolytes comprising a sulfur-based ionic liquid (IL), a lithium salt, and butyrolactone (GBL) as an additive hosted in PVdF-HFP matrix were prepared and characterized. The result shows that adding small amount of GBL to the polymer electrolytes can improve the cathodic stability of the electrolytes, which ensures the lithium plating/stripping in the redox process. Furthermore, cyclic voltammograms studies indicate that the polymer electrolytes have well reversible redox process. When the IL component reaches 75 wt%, the polymer electrolyte has higher ionic conductivity than the other samples and it is 6.32 × 10?4 S cm?1. The assembled batteries with the polymer electrolyte have better discharge capacity, and after 100 cycles, the discharge capacity of the battery still retains 148 mAh g?1.  相似文献   

10.
Butyl-Methyl-Morpholinium bis(trifluoromethanesulphonyl)imide [ButMetMor][TFSI] and Ethyl-Methyl-Morpholinum bis(trifluoromethanesulphonyl)imide [EtMetMor][TFSI] and their mixtures with propylene carbonate (PC) were investigated as potential electrolytes in an electrochemical double layer capacitor (EDLC). Temperature dependencies of conductivity and electrochemical stability windows of ionic liquids (ILs) as well as their mixtures were determined. PC mixtures give higher conductivity with maximum ca. 1:4 (IL:PC) molar rate. Temperature dependencies of conductivity follow the Arrhenius type, showing higher energy activation for neat ILs rather than for mixtures. The EDLC was constructed based on activated carbon cloth (ACC, Kynol®) ca. 2000 m2 g?1 and IL:PC mixture giving specific capacitance of ca. 100–120 F g?1.  相似文献   

11.
Proton-conducting polymer blend electrolytes based on PVA–PVP–NH4NO3 were prepared for different compositions by solution cast technique. The prepared films are investigated by different techniques. The XRD study reveals the amorphous nature of the polymer electrolyte. The FTIR and laser Raman studies confirm the complex formation between the polymer and salt. DSC measurements show decrease in T g with increasing salt concentration. The ionic conductivity of the prepared polymer electrolyte was found by ac impedance spectroscopy analysis. The maximum ionic conductivity was found to be 1.41 × 10?3 S cm?1 at ambient temperature for the composition of 50PVA:50PVP:30 wt% NH4NO3 with low-activation energy 0.29 eV. The conductivity temperature plots are found to follow an Arrhenius nature. The dielectric behavior was analyzed using dielectric permittivity (ε*) and the relaxation frequency (τ) was calculated from the loss tangent spectra (tan δ). Using this maximum ionic conducting polymer blend electrolyte, the primary proton battery with configuration Zn + ZnSO4·7H2O/50PVA:50PVP:30 wt% NH4NO3/PbO2 + V2O5 was fabricated and their discharge characteristics studied.  相似文献   

12.
Sodium lithium sulfide (NaLiS) nanocomposite have been successfully synthesized by using microwave-irradiation (MWI) method. The study suggested that the application of microwave heating is to produce homogeneous and fine NaLiS nanocomposite which were achieved by using the precursors of lithium acetate and thioacetamide in the presence of sodium alginate biopolymer. FTIR is used to identify the structural coordination and functional groups of the prepared nanocomposite. The structural property of NaLiS particles was investigated by XRD. The surface morphology and elemental composition of synthesized material was confirmed by SEM and EDX analyses. The optical property was studied by using UV–Vis spectrophotometer. Thermal stability of as prepared sample was studied by TGA/DTG analysis. Electrical transport studies of the prepared nanocomposite have been analyzed for various temperatures. NaLiS nanocomposite has ionic conductivity of ~?10?7 S cm?1 at 35 °C which is six orders of magnitude higher than that of micro sized bulk Li2S (~?10?13 S cm?1).  相似文献   

13.
Random copolymers of P(MMA-co-styrene) were synthesized via single electron transfer-living radical polymerization (SET LRP) at 25 °C in N,N-dimethylformamide (DMF) and benzene using CCl4 as initiator and Fe(0) wire/N,N,N′,N′-tetramethyl-1,2-ethanediamine (TMEDA)/hydrazine (NH2NH2) complexes as catalyst in the presence of air. Fe(0) wire-mediated single electron transfer-living radical copolymerization of MMA and styrene represented a robust and versatile technique to synthesize the well-defined copolymers. The copolymerization rate was faster in DMF than in benzene, as determined by the apparent rate constants. The results showed that the copolymerization followed first-order kinetics model in the presence of polar DMF and non-polar benzene. The molecular weights increased linearly with the increase of monomer conversion with a narrow polydispersity index when the conversion was beyond 25 %. The polarity and the quantity of solvent had significant effects on the polymerization, and the apparent rate constants were 1.28 × 10?4, 1.21 × 10?4, and 9.23 × 10?5 s?1 in the order of DMF amount, 5, 10, and 15 mL. The conversion increased from 29.3 to 48.5 % and the polydispersity index (PDI) changed from 1.24 to 1.21 with [CCl4]0/[TMEDA]0 molar ratio changing from 1:0.5 to 1:5. The chain extension experiment demonstrated that the copolymerization exhibited a living characteristic.  相似文献   

14.
Polyaniline salts containing sulfuric acid and cetyltrimethylammonium sulfate dopants were prepared by aqueous (PANI-Aq), emulsion (PANI-Em), and interfacial (PANI-In) polymerization pathways using cetyltrimethylammonium peroxodisulfate as an oxidative template. Formation of polyaniline was confirmed from infrared and X-ray diffraction spectral results. Value of conductivity (15 S cm?1) of the polyaniline salt prepared by emulsion polymerization pathway was higher with that of the conventional polyaniline salt. PANI-Aq, PANI-Em, and PANI-In showed layered, flower petals, and nanorod and flower petals morphologies, respectively. These polyaniline salts were used as electrode in supercapacitor. Specific capacitance of PANI-Em, PANI-Aq, and PANI-In were 520, 484, and 474 F g?1, which were higher than the conventional PANI-H2SO4 salt (390). Energy density was 26, 24.2, and 23.6 Wh kg?1, respectively at a power density of 120 W kg?1. After 3000 charge-discharge cycles, retention in the specific capacitance values of polyaniline salts was 86% (PANI-Em), 85.4% (PANI-Aq) and 76.1% (PANI-In).  相似文献   

15.
The diphenylzinc-butanone system was used as polymerization catalyst for some oxiranes in benzene solution at 60°C. This system is greatly influenced by the molar ratio of butanone to diphenylzinc, and the maximum catalytic activity for propylene oxide and ethylene oxide was found for a ratio of unity. GPC results strongly suggest the presence of more than one active species for the system. 13C NMR analysis indicates that the resulting poly(propylene oxide) has a head-to-tail arrangement. For the polymerization of propylene oxide with butanone/diphenylzinc = 1, after an initial induction period, the reaction was first-order with respect to monomer with k = 2·51 × 10?5 s?1. Ethylene oxide polymerizations using butanone/diphenylzinc = 1 and 5 were also first-order with respect to monomer after an initial induction period with k = 7·80 × 10?6 s?1 and k = 5·71 × 10?6 s?1, respectively. The diphenylzinc-butanone system was not an effective catalyst for styrene oxide polymerization.  相似文献   

16.
Copolymerization of methacrylic acid (MAA) and ethyl acrylate (EA) was performed by the emulsion polymerization technique in the presence of a mixture of ionic and nonionic emulsifiers, at 85°C, using potassium persulfate as initiator (0.16 wt % of monomer). The molar ratio of MAA : EA varied between 44 : 56 and 54 : 46 in the monomer feed. Copolymers of MAA and EA were synthesized by incorporating diallyl phthalate (DAP) with varying concentrations (0–1.7 mol % of total monomer) in the feed. A copolymer latex of MAA, EA, and DAP was also prepared by the variable feed process. The intrinsic viscosity and gel content were determined. Copolymers were characterized by IR and NMR spectroscopic techniques. The composition of copolymers was determined by 1H‐NMR spectra and sequential distribution from 13C{1H}‐NMR spectra. The pH of the copolymer emulsion varied between 3 and 10 by addition of aqueous ammonia (23% w/w) and its effect on Brookfield viscosity was studied. The effects of copolymer composition, crosslinking agent concentration in the feed, monomer feed process, polymer solid contents, and shear rate on Brookfield viscosity were studied at pH ~ 8. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1430–1441, 2003  相似文献   

17.
We reported on the synthesis and analysis of the composition, micro-structure, ac–dc conductivity performance and dielectric permittivity of triethylene glycol (TEG) stabilized MnxCo1-xFe2O4 nanoparticles obtained by polyol method. Crystallite size from XRD and particle size from TEM micrographs are consistent with each other. Conductivity measurements were performed to investigate the influence of the coating with TEG on the conduction characteristics of MnxCo1-xFe2O4 NP’s. The frequency-dependency of the ac conductivity shows electrode polarization effect. The dc conductivity is strongly temperature dependent and shows maximum conductivity of about 5 × 10?5 S cm?1 for x = 1.0 at 120 °C. Analysis of dielectric permittivity functions suggests that ionic and polymer segmental motions are strongly coupled.  相似文献   

18.
In this study, the synthesis of polypyrrole‐b‐vinyl aniline modified cyclohexanone formaldehyde resin (PPy‐b‐CFVAnR) block copolymers by a combination of condensation polymerization and chemical oxidative polymerization processes was examined. First, a cyclohexanone formaldehyde resin containing vinyl aniline units [4‐ vinyl aniline modified cycl?ohexanone formaldehyde resin (CFVAnR)] was prepared by a direct condensation reaction of 4‐vinyl aniline and cyclohexanone with formaldehyde in an in situ modification reaction. CFVAnR and pyrrole (Py) were then used with a conventional method of in situ chemical oxidative polymerization. The reactions were carried out with heat‐activated potassium persulfate salt in the presence of p‐toluene sulfonic acid in a dimethyl sulfoxide–water binary solvent system; this led to the formation of desired block copolymers. The effects of the oxidant–monomer molar ratio, dopant existence, addition order of the reactants, and reaction temperature on the yield, conductivity, and morphology of the resulting products were investigated. PPy‐b‐CFVAnR copolymers prepared with a resin‐to‐Py molar ratio of 1:40 showed conductivity in the range 3.7 × 10?1 to 3.8 × 10?2 S/cm. Oxidant‐to‐Py molar ratios of 0.5 and 1.0 were proposed to be the optimum stoichiometries for higher conductivity and yield, respectively, of the copolymer. The morphology of the copolymer (PPy‐b‐CFVAnR) was investigated with environmental scanning electron microscopy analyses. The results indicate that the surface of the copolymer was composed of well‐distributed nanospheres with average particle diameters of 60–85 nm. Also, the synthesized PPy‐b‐CFVAnR had a higher thermal stability than the pure CFVAnR. The chemical composition and structure of the PPy‐b‐CFVAnR copolymers were characterized by Fourier transform infrared spectroscopy and measurement. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42841.  相似文献   

19.
Network formation was monitored by shear storage modulus (G′) during free radical crosslinking polymerization to investigate the effects of pH and ethylenediaminetetraacetic acid (EDTA; a complex agent). Three types of acrylic monomers, acrylic acid (AAc), 2‐acrylamidoglycolic acid (AmGc), and 2‐acrylamido‐2‐methyl propanesulfonic acid (AmPS), were polymerized in the presence of a crosslinking agent. The ratio of crosslinking agent (methylene bis‐acrylamide; MBAAm) to monomer was varied as: 0.583 × 10?3, 1.169 × 10?3, 1.753 × 10?3, and 2.338 × 10?3. G′ of the hydrogel in crosslinking polymerizations of AAc and AmPS was effectively increased by addition of EDTA, which was not the case for the crosslinking polymerization of AmGc. The order of magnitude of G′ differed based on the acidity of monomer. The maximum values of G′ in crosslinking polymerizations of AAc, AmGc, and AmPS were ~20,000 Pa, 6000 Pa, and 400 Pa, respectively. G′ varied linearly with the molecular weight between crosslinks (Mwc). pH and EDTA‐complex affected the rate of intramolecular propagation during crosslinking polymerization. Our results indicated that G′ was primarily affected by the following factors in the order: (1) acidity of monomer, (2) Mwc, and (3) physical interactions induced by pH and EDTA. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41026.  相似文献   

20.
Amphiphilic copolymers of ethyl acrylate (EA) with uniform polyoxyethylene (PEO) grafts were synthesized by copolymerization of EA with methacrylate terminated PEO macromer in benzene using azobisisobutyronitrile as the initiator. The effects of the molecular weight of the macromers, the charging weight ratio of the macromer to EA, the total monomer concentration, and the amount of initiator on the grafting efficiency (GE) were reported as was the molecular weight of the copolymers. The highest GE reached to above 90% and the molecular weight of the copolymers varied from (5–15) × 104. The reactivity ratio of EA with the macromer was determined to be 0.83. The graft copolymers were purified with extractions and the purified products were characterized with IR, 1H‐NMR, gel permeation chromatography, differential scanning calorimetry, and membrane osmometry. The average grafting number of the copolymer varied from 2 to 11. The glass‐transition temperature of the poly(EA) in the copolymer was increased because of the partial compatibility of the two components. The crystalline property, emulsifying property, and dilute solution viscosity of the graft copolymers, as well as ionic conductivity of their complexes with alkali metal salts, were studied. The emulsifying volume decreased with the increasing molecular weight of the PEO grafts. The addition of NaOH to the emulsion affected the emulsifying volume only slightly, whereas the addition of HCl changed the oil in water type emulsion into a water in oil type. The conductivity of the LiClO4 complex of the copolymer with an oxyethylene/Li ratio of 20 reached 3.7 × 10?5 S/cm at 27°C. The lower the crystallinity of the complex, the higher was the conductivity. The dilute solution viscosity showed the existence of intramolecular microphase separation. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 903–912, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号