共查询到20条相似文献,搜索用时 12 毫秒
1.
A novel poly(acrylic acid)/attapulgite superabsorbent composite was synthesized by graft copolymerization reaction of acrylic acid (AA) on attapulgite micropowder using N,N′‐methylenebisacrylamide (MBA) as a crosslinker and ammonium persulfate (APS) as an initiator in aqueous solution. The effects on water absorbency of such factors as reaction temperature, initial monomer concentration, degree of neutralization of AA, amount of crosslinker, initiator, and attapulgite were investigated. These crosslinked superabsorbent composites were characterized by thermogravimetetric analysis and scanning electron microscopy. The graft copolymerization reaction of AA on attapulgite micropowder was characterized by FTIR. The water absorbencies for these superabsorbent composites in water and saline solutions were investigated and water‐retention tests were carried out. Results obtained from this study show that the water absorbency of the superabsorbent composite synthesized under optimal synthesis conditions with an attapulgite content of 10% exhibited an absorption of 1017 g H2O/g sample and 77 g H2O/g sample in distilled water and in 0.9 wt % NaCl solution, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1596–1603, 2004 相似文献
2.
Pillared clay-based superabsorbents (PILC-SA) were synthesized by using Al pillared-montmorillonite K10 and KSF via graft copolymerization reaction of acrylic acid (AA). Swelling behavior of pillared clay-based superabsorbent films in distilled water and at different pH values were investigated at room temperature. It was also obtained that Al-KSF and Al-K10 based superabsorbents were pH dependent and showed a reversible swelling behavior. Water absorbency of Al-KSF based superabsorbent was higher than that of Al-K10 based one. SEM, FTIR, and XRD analysis were conducted for further characterization of the PILC-SA. FTIR analyses lead to ester formation between PILC and SA. XRD revealed the basal spacing of the pillared clays before and after in situ incorporation indicating that the morphology of the superabsorbent was exfoliated and the layers of clay dispersed on the composite. 相似文献
3.
A novel poly (acrylic acid)/sodium humate superabsorbent composite was synthesized by graft copolymerization reaction of acrylic acid (AA) on sodium humate micropowder using N,N′‐methylenebisacrylamide (MBA) as a crosslinker and potassium peroxydisulfate (KPS) as an initiator in aqueous solution. The effects on water absorbency of factors such as reaction temperature, initial monomer concentration, and degree of neutralization of AA, amount of crosslinker, initiator, and sodium humate were investigated. The superabsorbent composite was characterized by scanning electron microscopy, and the graft copolymerization reaction of AA on sodium humate micropowder was characterized by IR spectroscopy. Results obtained from this study show that the water absorbency of the superabsorbent composite synthesized under optimal conditions for synthesis with a sodium humate content of 5.3% exhibited absorption of 684 g H2O/g sample in distilled water. Water‐retention in soil is enhanced by the use of the superabsorbent composite. The effect of superabsorbent composite on the growth of corn is reported. The superabsorbent composite may be of use as water management materials for agriculture purposes in desert and drought‐prone areas. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5137–5143, 2006 相似文献
4.
In this work, a series of novel hydroxyethyl cellulose‐ g‐poly(acrylic acid)/attapulgite (HEC‐g‐PAA/APT) superabsorbent composites were prepared through the graft polymerization of hydroxyethyl cellulose (HEC), partially neutralized acrylic acid (AA), and attapulgite (APT) in aqueous solution, and the composites were characterized by means of Fourier‐transform spectroscopy, scanning electron microscopy, and transmission electronmicroscopy. The effects of polymerization variables including concentrations of the initiator and crosslinker and APT content on water absorbency were studied, and the swelling properties in various pH solutions as well as the swelling kinetics in various saline solutions were also systematically evaluated. Results showed that the introduction of 5 wt% APT into HEC‐g‐PAA polymeric network could improve both water absorbency and water absorption rate of the superabsorbent composites. In addition, the superabsorbent composites retained high water absorbency over a wide pH range of 4–10, and the swelling kinetics of the superabsorbent composites in CaCl2 and FeCl3 solutions exhibited a remarkable overshooting phenomenon. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers 相似文献
5.
Ping‐Sheng Liu Li Li Ning‐Lin Zhou Jun Zhang Shao‐Hua Wei Jian Shen 《应用聚合物科学杂志》2006,102(6):5725-5730
A novel superabsorbent nanocomposite was synthesized through the intercalation polymerization of partially neutralized acrylic acid and a sodium‐type montmorillonite powder with N,N′‐methylenebisacrylamide as a crosslinker and ammonium persulfate and sodium sulfite as a type of mixed redox initiator. The effects of such factors as the amounts of the sodium‐type montmorillonite, crosslinker, and initiator and neutralization degree on the water absorbency of the nanocomposite were investigated. The structure and micrographs of the superabsorbent were characterized with Fourier transform infrared spectroscopy, X‐ray diffraction, and scanning electron microscopy. The results showed that the acrylic acid monomer was successfully intercalated into the montmorillonite layers and banded together with them. The montmorillonite layers were exfoliated and basically dispersed in the composite on a nanoscale after the polymerization. The water absorbency of the nanocomposite was much higher than that of pure poly(acrylic acid). The optimum absorbency of the nanocomposite in distilled water and saline water (NaCl concentration = 0.9%) was 1201 and 83 g/g, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5725–5730, 2006 相似文献
6.
Jihuai Wu Jinfeng Zhong Jianming Lin YueLin Wei Yimin Xie 《Polymer Engineering and Science》2006,46(3):324-328
Using partly neutralized acrylic acid as monomer, kaoline ultrafine powder as filler and N,N′‐(dimethyl)acrylamide as crosslink agent, poly(sodium acrylate)/kaoline superabsorbent composite was synthesized by aqueous solution polymerization method. Using the superabsorbent composite as collagen, a hydrogel was prepared. The influence of the neutralization degree of superabsorbent collagen, the compositions, the concentration, and the pH value of exterior solution on the swelling behavior of the hydrogel was investigated. It was found that the swelling capability of the hydrogel depended on the groups on the collagen. The swelling capability of the hydrogel relied on the ionic intensity, molecular polarity, molecular volume, as well as the concentration of exterior solution. When the pH value of exterior solution was equal to seven, the hydrogel has a maximum swelling value of 800 times. POLYM. ENG. SCI. 46:324–328, 2006. © 2006 Society of Plastics Engineers 相似文献
7.
聚(丙烯酸-丙烯酰胺)/水滑石纳米复合高吸水性树脂的制备及表征 总被引:3,自引:0,他引:3
首先用尿素法合成了水滑石(HT),然后用甲基丙烯磺酸钠(SMAS)对水滑石进行插层,得到了插层的水滑石(SMAS-HT),最后通过反相悬浮聚合制备了一种新型的聚(丙烯酸-丙烯酰胺)/水滑石纳米复合高吸水性树脂,其中N,N′-亚甲基双丙烯酰胺(NMBA)为交联剂,过硫酸钾(KPS)为引发剂。通过傅里叶变换红外光谱(FTIR)、X-射线衍射(XRD)及扫描电镜(SEM)等手段表征其结构和形貌。考察了SMAS-HT的含量对其吸水(盐)性能的影响。结果表明,插入SMAS的水滑石片层在聚合后发生了剥离,添加少量的SMAS-HT可以明显提高树脂的吸水(盐)性能,当SMAS-HT含量为3.0%(质量)时,树脂的吸(盐)水性能达到最大。 相似文献
8.
9.
The effect of acid activation and thermal treatment of attapulgite on water absorbency of superabsorbent composite were investigated. Under the same preparation conditions, superabsorbent composite prepared with natural attapulgite exhibited a water absorbency of 639 g/g and it merely kept 71% of its initial water absorbency after 5 times of swelling–deswelling–reswelling test. However, superabsorbent composites prepared with 2–10 M hydrochloric acid acidified attapulgite and 100–400°C thermal treated attapulgite respectively exhibited the water absorbency of 884–1,241 g/g and 701–1,515 g/g. Also, those superabsorbent composites can keep 87% and 85% of their initial water absorbency after 5 times of swelling–deswelling–reswelling test, respectively. These results showed that, compared with superabsorbent composite prepared with natural attapulgite, the comprehensive water‐absorbing properties of poly(acrylic acid)/ attapulgite superabsorbent composites were improved effectively by acid activation and thermal treatment of attapulgite. This improvement of water absorbencies and gel strength of superabsorbent composite may be due to synthetical factors such as changes in the crystalline structure and the specific surface area and improvement of the number and the activity of hydroxyl groups of attapulgite, which in turn influence the grafting efficiency of monomer, crosslinking density, and the structure of superabsorbent composite network. POLYM. COMPOS., 28:397–404, 2007. © 2007 Society of Plastics Engineers 相似文献
10.
Chitosan-graft-poly(acrylic acid)/rice husk ash based superabsorbent hydrogel composite: preparation and characterization 总被引:2,自引:0,他引:2
Francisco H. A. Rodrigues André R. Fajardo Antonio G. B. Pereira Nágila M. P. S. Ricardo Judith P. A. Feitosa Edvani C. Muniz 《Journal of Polymer Research》2012,19(12):1-10
Rice husk ash (RHA), an industrial waste, was incorporated in the preparation of high performance chitosan (CTS) and poly(acrylic acid) (PAA) based superabsorbent hydrogel. Hydrogels filled with RHA previously calcinated at 900 °C (RHA900) showed better water uptake (225 gwater/gabsorbent) than those with husk calcinated at 400 °C (RHA400) (198 gwater/gabsorbent) due to the higher purity and crystallinity, at same composition. The hydrogel composite at 5 wt-% of RHA900 showed the best water uptake (255 gwater/gabsorbent). A clear reduction in swelling degree is observed by increasing the amount of crosslinker from 1 to 3 wt-% due to the increase in the crosslinking density forming more rigid hydrogels. On the other hand, an increase in the initiator amount from 1 to 3 wt-% increased the water uptake due to the formation of greater numbers of active sites increasing the number of PAA chains grafted into CTS backbone. Furthermore, the hydrogel composites presented responsive behavior in relation to both pH and sat solution. The data shows it is possible to obtain high performance materials by incorporating an industrial waste, rice husk ash, in the preparation of hydrogel composites. 相似文献
11.
Modified poly(aspartic acid)s containing pendant allyl groups were synthesized by the reaction of poly(succinimide) with an allyl amine in dimethylformamide. The contents of the allyl groups in the poly(aspartic acid) ranged from 2 to 17.4% confirmed by 1H NMR. Hydrogels were prepared using modified poly(aspartic acid) by chemical crosslinking using redox radical initiators including ammonium persulfate and potassium peroxodisulfate. The morphologies of the poly(aspartic acid)-based hydrogels were investigated by scanning electron microscopy (SEM). The water-absorbent experiments were carried out, and revealed that lightly cross-linked hydrogels resulted in effective water-absorbent properties. These results suggested that allyl group-modified poly(aspartic acid)s are useful in providing biodegradable hydrogels. 相似文献
12.
A novel chitosan-g-poly (acrylic acid)/unexpanded vermiculite (CTS-g-PAA/UVMT) superabsorbent composite was prepared by graft polymerization among chitosan (CTS), acrylic acid (AA) and unexpanded
vermiculite (UVMT) in aqueous solution. The effect of polymerization variables, including the content of crosslinker, initiator
and UVMT, the weight ratio of AA to CTS, the reaction temperature, time and drying method, on water absorbency were studied.
The swelling rate of the superabsorbent composite in distilled water was also investigated. The results from FTIR spectra
showed that CTS and UVMT participated in graft polymerization reaction with AA. Introducing UVMT into the CTS-g-PAA polymeric network could form a loose and more porous structure by the SEM analysis, and the polymerization reaction is
performed on the surface of UVMT micropowders from the results of XRD. The introduced UVMT enhanced the swelling rate and
the water absorbency of CTS-g-PAA/UVMT superabsorbent composite. 相似文献
13.
将交联剂N,N′-亚甲基双丙烯酰胺溶于甲醇溶液制成表面处理液,通过表面交联反应将磺化腐殖酸(HA)与聚丙烯酸(PAA)结合,制得一种适合于农林领域应用的腐殖酸-聚丙烯酸高吸水性树脂(HA-PAA).研究了表面处理液浓度、交联剂用量和腐殖酸量对HA-PAA吸水性能的影响规律和吸水机理,以及产物在沙土中的保水性能,并通过扫描电镜分析了HA-PAA的表面结构.研究结果表明,当含有10% HA时,HA-PAA耐电解质性能良好,吸水性能最佳;当沙土中添加0.2%的HA-PAA时,可明显改善沙土的贮水、保水性能.HA-PAA作为农林领域用保水剂,可发挥抗旱保墒和促进植物生长的双重作用. 相似文献
14.
15.
Poly(butyl acrylate)/poly(methyl methacrylate) (PBA/PMMA) core–shell particles embedded with nanometer‐sized silica particles were prepared by emulsion polymerization of butyl acrylate (BA) in the presence of silica particles preabsorbed with 2,2′‐azobis(2‐amidinopropane)dihydrochloride (AIBA) initiator and subsequent MMA emulsion polymerization in the presence of PBA/silica composite particles. The morphologies of the resulting PBA/silica and PBA/silica/PMMA composite particles were characterized, which showed that AIBA could be absorbed effectively onto silica particles when the pH of the dispersion medium was greater than the isoelectric potential point of silica. The critical amount of AIBA added to have stable dispersion of silica particles increased as the pH of the dispersion medium increased. PBA/silica composite particles prepared by in situ emulsion polymerization using silica preabsorbed with AIBA showed higher silica absorption efficiency than did the PBA/silica composite particles prepared by direct mixing of PBA latex and silica dispersion or by emulsion polymerization in which AIBA was added after the mixing of BA and silica. The PBA/silica composite particles exhibited a raspberrylike morphology, with silica particles “adhered” to the surfaces of the PBA particles, whereas the PBA/silica/PMMA composite latex particles exhibited a sandwich morphology, with silica particles mainly at the interface between the PBA core and the PMMA shell. Subsequently, the PBA/silica/PMMA composite latex obtained had a narrow particle size distribution and good dispersion stability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3425–3432, 2006 相似文献
16.
Paola Calcagnile Teresa Sibillano Cinzia Giannini Alessandro Sannino Christian Demitri 《应用聚合物科学杂志》2019,136(21):47546
The work presents a fully degradable superabsorbent composite material to be used in agricultural and horticultural applications. It is designed to retain and release fertilizer solutions to the soil in a controlled manner, permitting resource optimization. Because of its ability to absorb and release large amounts of saline water, a natural superabsorbent hydrogel derived from cellulose was chosen. Potassium nitrate was chosen to model the fertilizer. Poly(lactic acid) was added to the final composition in order to delay solution release. The composite material was obtained using easily available and low-cost starting materials and using a simple manufacturing process, using a standard mixer. After being analyzed for morphological (scanning electron microscopy), physical (X-ray diffraction), chemical (energy-dispersive X-ray spectroscopy), and thermal properties (thermogravimetric analysis and differential scanning calorimetry), the material was tested using two different Mediterranean cultivations (Pomodoro di Morciano di Leuca and Cicoria Otrantina) and two different kinds of soil (red and white soils). The analysis revealed different water release characteristics for different soils. These findings have been confirmed by measuring plant growth for both species, as well as fruit yield of the tomatoes. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47546. 相似文献
17.
Novel derivatives of poly(aspartic acid) conjugated with various amino acids and their amphiphilic copolymers were synthesized
and characterized. Methyl esters of various amino acids (in their hydrochloride form) were synthesized from the reaction of
amino acids with methanol in the presence of chlorotrimethylsilane (TMSCl). Aminolysis reaction onto polysuccinimide (PSI)
using various amino acid methyl esters in the presence of catalyst and the followed hydrolysis provided the corresponding
amino acid-conjugated poly(aspartic acid) derivatives in high reaction yield. Amino acid—conjugated amphiphilic analogs were
also prepared by introducing hydrophobic alkylamine along with amino acid using a similar procedure. The chemical structures
of copolymers were confirmed by FT-IR and 1H NMR spectroscopy. The physicochemical properties of amphiphilic copolymers were characterized using dynamic light scattering
(DLS), fluorescence spectroscopy and field emission scanning electron microscopy (FE-SEM). In addition, the in vitro cell
viability of the copolymers was examined. These polymers have potential applications in the pharmaceutical and cosmetic fields
as delivery vehicles for bioactive molecules. 相似文献
18.
19.
利用溶液聚合法制备了壳聚糖接枝聚丙烯酸钠/高岭土复合树脂,研究了复合树脂在蒸馏水中的吸水速率、重复吸水性能和人工尿液中的吸水倍率,以及在不同温度、不同电解质溶液离子强度和不同pH值的环境下复合树脂的吸水性能。结果表明,复合树脂的吸水速率较慢,在多次重复吸水后吸水性能也逐渐降低,在人工尿液中的吸水倍率高于聚丙烯酸钠树脂,低于壳聚糖接枝丙烯酸钠树脂;随着温度的升高,复合树脂的吸水能力增强,超过50℃后变化较小;树脂的吸液倍率随着电解质溶液浓度和价态的增大而下降;随着pH值的增大而出现驼峰,在pH=3.5和pH=8.5处分别出现吸液倍率最大值。 相似文献
20.
A novel poly(acrylic acid)/attapulgite (APT)/sodium humate (SH) superabsorbent composite was synthesized through the graft copolymerization reaction of acrylic acid on APT micropowder and SH with N,N′‐methylene bisacrylamide as a crosslinker and ammonium persulfate as an initiator in an aqueous solution. Various effects on the water absorbency, including the amounts of the crosslinker, initiator, APT, and SH, were investigated. The superabsorbent composite was characterized with Fourier transform infrared spectroscopy and scanning electron microscopy. The superabsorbent composite synthesized under optimal synthesis conditions with an APT concentration of 20% and an SH concentration of 20% exhibited absorption of 583 g of H2O/g of sample and 63 g of H2O/g of sample in distilled water and in a 0.9 wt % NaCl solution, respectively. The slow‐release property of SH from the superabsorbent composite into water was measured, and a test of the water retention of the superabsorbent composite in soil was also carried out experimentally with and without the superabsorbent composite. The results showed that the superabsorbent composite had not only good water retention but also an additional slow‐release property of SH. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 37–45, 2007 相似文献