首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Polycarbazole (PCz) has been synthesized by chemical oxidation method using APS as an oxidizing agent and PCz/CuO and PCz/Fe2O3 nanocomposites by in situ polymerization method for different wt% of CuO and Fe2O3 at room temperature. XRD patterns confirmed crystalline nature of samples. FTIR indicated strong interaction between PCz and nano fillers. The morphological and optical absorption studies were carried out using SEM and UV–Vis respectively. Addition of CuO or Fe2O3 to PCz decreased its direct and indirect band gaps. However, band gap showed a small change with dopant contents up to 30%. Urbach energy decreased with the addition of dopants. But Urbach energy of the composites increased with increasing dopants content from 10 to 30%. DC conductivity of PCz and its nanocomposites has been measured by following two probe technique in the temperature range 300–423 K. The conductivity of both the nanocomposites is found to be less than the pure PCz and it is found to increase with wt% of CuO or Fe2O3 as the case may be. The activation energy has been determined by fitting Arrhenius expression to the dc conductivity data at high temperature. The activation energy of polycarbazole is determined to be less than that of the composites. In both the composites, activation energy decreased and conductivity increased with the increase of dopant content.

  相似文献   

2.
In this study, the effects of multi‐walled carbon nanotubes (MWCNT), and its hybrids with iron oxide (Fe2O3) and copper oxide (CuO) nanoparticles on mechanical characteristics and thermal properties of epoxy binder was evaluated. Furthermore, simultaneous effects of using MWCNT with TiO2 as pigment and CaCO3 as filler for epoxy composites were determined. To investigate effects of nano‐ and micro‐particles on epoxy matrix, the samples were evaluated by TGA and DTA. It was found that the hybrid of MWCNT with nano metal oxides caused considerable increment in the tensile and flexural properties of epoxy samples in comparison to the single MWCNT containing samples at the same filler contents. Significant improvement in the thermal conductivity of epoxy samples was obtained by using TiO2 pigment along with MWCNT. The TiO2 pigment also caused considerable improvement in mechanical properties of the epoxy matrix and the MWCNT containing nanocomposite. The best mechanical and thermal properties of epoxy nanocomposites were obtained at 1.5 wt % of MWCNT and 7 wt % of TiO2 that it should be attributed to particle network forming of the particles which cause better nano/micro dispersion and properties. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43834.  相似文献   

3.
《Ceramics International》2020,46(5):5828-5840
Currently, the organic-inorganic hybrid materials have gained tremendous importance due to their unique applications in different technological fields. In this connection, the chemical synthesis of poly(methyl methacrylate) (PMMA) and its binary and ternary nanocomposites by in-situ bulk polymerization with various percentages of reduced graphene oxide (RGO) and hematite nanoparticles (Fe2O3 NPs) is presented. Dielectric properties of binary and ternary nanocomposites are investigated in the frequency range of 25 Hz-1 MHz for each composition. Ternary nanocomposite of PMMA with RGO:Fe2O3 NPs (2:2 wt%) exhibits a substantial enhancement of the dielectric constant up to ≈308 and suppressed dielectric loss of 0.12 at 25 Hz. Appearance of three types of interfaces in ternary PMMA nanocomposites accounts for the superior dielectric properties due to the accumulation of greater number of charges at the interfaces as compared to the binary nanocomposites with only one interface. The same optimized ternary PMMA nanocomposite shows a remarkable improvement in the thermal conductivity (2.04 W/mK), which is attributed to the formation of efficient thermal conducting pathways contributed by the synergic reduction in thermal resistance of both RGO and Fe2O3 NPs (2:2 wt%) relative to the binary nanocomposites PMMA/2 wt% RGO (1.04 W/mK) and PMMA/2 wt% Fe2O3 (0.98 W/mK). Thus, ternary nanocomposites prove to be the excellent candidates for thermal management applications. Furthermore, a comparison of the mechanical strength and thermal stability for all the binary and ternary nanocomposites is presented. In the last section, respective precursors and optimized binary and ternary nanocomposites are characterized by XRD, FTIR and SEM which reveal the strong interaction of respective nanofillers into PMMA matrix.  相似文献   

4.
《Ceramics International》2021,47(20):28252-28259
Oxide ceramics are considered as promising high temperature solar absorber materials. The major aim of this work is the development of a new solar absorber material with promising characteristics, high efficiency and low-cost processing. Hence, this work provides a comparative and inclusive study of densification behavior, microstructure features, thermal emissivity and thermal conductivity values of the two new high temperature solar absorbers of ZrO2/Fe2O3 and Al2O3/CuO ceramics. Ceramic composites of ZrO2/(10–30 wt%) Fe2O3 and Al2O3/(10–30 wt%) CuO were prepared by pressureless sintering method at a temperature of 1700 °C/2hrs. Identification of the solar to thermal efficiency of the composites was evaluated in terms of their measured thermal emissivity. Thermal efficiency and heat transfer homogeneity were investigated in terms of thermal conductivity and diffusivity measurement. The results showed that both composites exhibited comparable densification behavior, homogenous and harmonious microstructure. However, Al2O3/10 wt% CuO composite showed higher thermal and solar to thermal efficiencies than ZrO2/Fe2O3 composites. It gave the lowest and the best thermal emissivity of 0.561 and the highest thermal conductivity of 15.4 W/m. K. These values proved to be the best amongst all those of the most known solar absorber materials made from the expensive SiC and AlN ceramics. Thus, Al2O3/CuO composites have succeeded in obtaining outstanding properties at a much lower price than its other competitive materials. These results may strongly identify Al2O3/CuO composites as promising high-temperature solar absorber materials instead of ZrO2 and the other carbide and nitride ceramics.  相似文献   

5.
A sonochemical technique is used for in situ coating of iron oxide (Fe3O4) nanoparticles on outer surface of MWCNTs. These Fe3O4/MWCNTs were characterized using a high‐resolution transmission electron microscope (HRTEM), X‐ray diffraction, and thermogravimetric analysis. The as‐prepared Fe3O4/MWCNTs composite nanoparticles were further used as reinforcing fillers in epoxy‐based resin (Epon‐828). The nanocomposites of epoxy were prepared by infusion of (0.5 and 1.0 wt %) pristine MWCNTs and Fe3O4/MWCNTs composite nanoparticles. For comparison purposes, the neat epoxy resin was also prepared in the same procedure as the nanocomposites, only without nanoparticles. The thermal, mechanical, and morphological tests were carried out for neat and nanocomposites. The compression test results show that the highest improvements in compressive modulus (38%) and strength (8%) were observed for 0.5 wt % loading of Fe3O4/MWCNTs. HRTEM results show the uniform dispersion of Fe3O4/MWCNTs nanoparticles in epoxy when compared with the dispersion of MWCNTs. These Fe3O4/MWCNTs nanoparticles‐infused epoxy nanocomposite shows an increase in glass transition (Tg) temperature. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
In the present work, the nanocomposites based on different transition metal oxides like iron oxide (Fe2O3), zinc oxide (ZnO), silicon dioxide (SiO2), zirconium dioxide (ZrO2), and titanium dioxide (TiO2) in PVA matrix have been studied for their suitability as electromagnetic interference (EMI) shielding materials in the frequency range of 4–8 GHz (C-band) and 8–12 GHz (X-band). The nanocomposites containing 0.1, 0.5, 1.0, 5.0, and 10.0 wt% of oxides in the matrix were synthesised by solvent casting method. The EMI attenuation studies in 4–12 GHz frequency range were carried out using the Vector Network Analyzer R & S: ZVA40 method by measuring the loss due to reflection. The minimum reflectivity values for the composites containing Fe2O3, ZnO, SiO2, ZrO2, and TiO2 in PVA matrix at 10 wt% concentration level in the matrix were found to be ?38.85 dB (10.4 GHz), ?33.65 dB (10.4 GHz), ?41.90 dB (10.4 GHz), ?24.90 dB (11.0 GHz), and ?32.90 dB (9.76 GHz), respectively. Based on these results, the SiO2- and Fe2O3-based composites, which also exhibit high thermal stability and mechanical strength, are found to be low-cost and efficient EMI shielding materials.  相似文献   

7.
It is important to manipulate the synthesis parameters or additives used in order to produce conducting polymer such as polyaniline (PAni) with moderate conductivity, magnetic and dielectric properties that could enhance its microwave absorbing and shielding properties. In this communication, novel PAni/HA/TiO2/Fe3O4 nanomaterials with different Fe3O4 contents were prepared by template‐free method by using TiO2 and Fe3O4 nanoparticles as dielectric filler and magnetic filler, respectively. Before addition of ammonium peroxydisulfate (APS) for polymerization, Fe3O4 aqueous solution was treated with FeCl36H2O in order to disperse well the Fe3O4 in the mixture. The result shows that better dispersion of Fe3O4 in the mixture by FeCl36H2O treatment could significantly improve the conductivity of the nanocomposites and also activate the formation of nanorods/tubes. Moreover, PAni/HA/TiO2/Fe3O4 nanocomposites treated with FeCl36H2O show better microwave absorption (99.950–99.999% absorption) compared with PAni/HA/TiO2/Fe3O4 micro/nanocomposites (67.0− 99.4% absorption) without treatment in frequency range of 10–13 GHz. Among the prepared PAni/HA/TiO2/Fe3O4 micro/nanocomposites and nanocomposites, PAni/HA/TiO2/Fe3O4 nanocomposite (treated with FeCl36H2O) with 40% Fe3O4 exhibit the best microwave absorption (99.999% absorption at 10 GHz) because of its high conductivity, high heterogeneity and moderate magnetization. POLYM. COMPOS., 2010. © 2010 Society of Plastics Engineers  相似文献   

8.
《Ceramics International》2020,46(7):8819-8826
Here, we focus our efforts on synthesizing a uniform dispersion of CuO nanoparticles on mesoporous TiO2 networks for the first time. H2PtCl6 was added through a photocatalytic reaction to produce 0.5% Pt/CuO–TiO2 nanocomposites. XRD patterns confirmed that the prepared TiO2 formed the anatase phase. TEM images showed close contacts between CuO and TiO2 with 5–10 nm particle sizes. One of the advantages of the synthesized mesoporous CuO–TiO2 nanocomposites was the high pore volume (0.540 cm3 g−1) and large surface area (300 m2 g−1). The H2 evolution over the mesoporous 3 wt% CuO–TiO2 nanocomposites using a glucose hole scavenger [10 vol%] was determined to be ~13000 μmol/g, a value that was 1300 times greater than that of mesoporous TiO2. The H2 evolution rate was increased by up to 1300 and 20 times for 3 wt% CuO–TiO2 and 0.1 wt% CuO–TiO2 nanocomposites, respectively, compared with that of mesoporous TiO2. The increase in H2 evolution over mesoporous CuO–TiO2 nanocomposites was explained by the increased light harvesting capacity, high glucose molecule diffusion and efficient charge carrier separation. Moreover, the construction of a heterostructure with a p–n CuO–TiO2 heterojunction expedited the separation of charge carriers and promoted the evolution of H2. In addition, H2 evolution was substantially increased by the synergistic effects of Pt and CuO on the mesoporous TiO2 networks. Photoelectrochemical and photoluminescence measurements were employed to prove the H2 evolution mechanism over the CuO nanoparticles deposited on the mesoporous TiO2 networks.  相似文献   

9.
Thermal stability of ethylene–propylene terpolymer (EPDM) loaded with various metallic oxides (PbO, CuO, NiO, Fe2O3, Cr2O3, TiO2, ZrO2) was assessed by the oxygen uptake method. The effects of 5 phr oxide of thermal aging of elastomer were investigated under isothermal (180°C) and isobaric (air at normal pressure) conditions. The influence of this was pointed out. Some mechanistic considerations on the oxidative degradation of EPDM are presented. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2155–2158, 2001  相似文献   

10.
The absorptivity of solar thermal absorber materials affects the heliothermal conversion efficiency of concentrated solar power systems. The solar absorbing ceramics were prepared by the fixed mixture of bauxit, Fe2O3, and TiO2 with adding CuO in different percentages. The absorptivity and thermal shock resistance with the effect of adding CuO in different percentages were studied. Fe2O3 and TiO2 have excellent optical properties, and CuO decreases the material's band gap to boost the electronic transition and increase the material absorptivity. The results showed that the material is sintered at 1380°C with an excellent absorptivity of 94.00% in the spectrum range of 0.3–2.5 μm, and the bending strength is 132.94 MPa. The bending strength was increased by 21.07% after 30 thermal shock cycles (1000°C-room temperature, air cooling). The liquid phase facilitates the synthesis of hercynite with excellent high temperature properties. The hercynite improves the thermal shock resistance of the material.  相似文献   

11.
《Catalysis communications》2004,5(11):681-685
Epoxidation of styrene by anhydrous tert-butyl hydroperoxide over a number of transition metal oxide (viz. TiO2, Cr2O3, MnO2, Fe2O3, Co3O4, NiO, CuO, ZnO, Y2O3, ZrO2, La2O3 and U3O8) supported nano-size gold catalysts, prepared by the homogeneous deposition–precipitation method, has been investigated. The supported gold catalysts (except Au/MnO2 and Au/U3O8) showed good styrene conversion activity and selectivity for styrene oxide in the epoxidation. The Au loading, Au particle size and performance in the epoxidation of the supported gold catalysts are found to be strongly influenced by the transition metal oxide support used in the catalyst. The Au/TiO2 and Au/CuO are promising catalysts for the selective epoxidation.  相似文献   

12.
The aim of this study is to develop a process for the removal of Hg0 using H2S over iron oxides sorbents, which will be located just before the wet desulfurization unit and catalytic COS converter of a coal gasification system. It is necessary to understand the reactions between the iron oxide sorbent and other components of the fuel gas such as H2S, CO, H2, H2O, etc. In this study, the sulfidation behavior and activity for COS formation during Hg0 removal from coal derived fuel gas over iron oxides prepared by precipitation and supported iron oxide (1 wt% Fe2O3/TiO2) prepared by conventional impregnation were investigated. The iron oxide samples were dried at 110 °C (designated as Fe2O3-110) and calcined at 300 and 550 °C (Fe2O3-300 and Fe2O3-550). The sulfidation behavior of iron oxide sorbents in coal derived fuel gas was investigated by thermo-gravimetric analysis (TGA). COS formation during Hg0 removal over iron oxide sorbents was also investigated using a laboratory-scale fixed-bed reactor. It was seen that the Hg0 removal activity of the sorbents increased with the decrease of calcinations temperature of iron oxide and extent of sulfidation of the sorbents also increased with the decrease of calcination temperature. The presence of CO suppressed the weight gain of iron oxide due to sulfidation. COS was formed during the Hg0 removal experiments over Fe2O3-110. However, in the cases of calcined iron oxides (Fe2O3-300, Fe2O3-550) and 1 wt% Fe2O3/TiO2, formation of COS was not observed but the Hg0 removal activity of 1 wt% Fe2O3/TiO2 was high. Both FeS and FeS2 were active for Hg0 removal in coal derived fuel gas without forming any COS.  相似文献   

13.
UV/O3 radiation and chemical resistant nanocomposite films of functionalized/metal decorated multiwall carbon nanotubes (MWCNTs) with polymethylmethacrylate (PMMA) are synthesized. Silver nanoparticles are decorated on the surface of UV/O3 functionalized MWCNTs by both reduction and in situ growth from AgNO3 aqueous solution. Microscopic studies reflect the better dispersion of UV/O3 functionalized/silver decorated MWCNTs in polymer matrix contributing in enhancement of thermal stability, thermomechanical strength, glass transition temperatures, and thermal conductivity of nanocomposites even at 0.25 wt% MWCNTs additions. The thermal stability of nanocomposite film (0.25 wt% loading), prepared by using a surfactant (Sodium dodecyl sulfate) is increased to about 27°C while the thermomechanical properties are raised up to 76% at 100°C. Thermal and thermomechanical behavior of pre‐ and post‐UV/O3 irradiated nanocomposite films are compared with neat polymer. The results reveal that UV/O3 functionalized MWCNTs can effectively disperse the radiation and have a dramatic reinforcement effect on the nature of the degradation of PMMA matrix. POLYM. COMPOS., 36:969–978, 2014. © 2014 Society of Plastics Engineers  相似文献   

14.
《Ceramics International》2016,42(9):11184-11192
Transition metal oxide (Fe2O3, Co3O4 and CuO) loaded ZnTiO3–TiO2 nanocomposites were successfully prepared by solid state dispersion method. The structural, morphological and optical properties of samples were characterized by TGA/DTA, XRD, BET, FT-IR, DRS, PL, XPS and SEM techniques. The photocatalytic activity of samples was investigated by degradation of 4-chlorophenol in water under sunlight. The Fe2O3 loaded sample was found to exhibit much higher photocatalytic activity than the other composite powders. 7Fe2O3/ZnTi sample has the highest percentage of 4-chlorophenol degradation (100%) and highest reaction rate (1.27 mg L−1 min−1) was obtained in 45 min. The enhancement of photocatalytic activity for ZnTiO3–TiO2 sample with Fe2O3 addition may be attributed to its small particle size, the presence of more surface OH groups, lower band gap energy than other samples in this paper and the presence of more hexagonal ZnTiO3 phase in the morphology.  相似文献   

15.
The effect of multi-walled carbon nanotubes (MWCNTs) on cure kinetic parameters of the epoxy/amine/TiO2 (1 wt%) resin system was studied dynamically at four heating rates using DTA. The presence of MWCNT in various amounts (0.1, 0.2, 0.4 and 0.6 wt%) neither retarded nor accelerated the cure reaction of the epoxy/amine/TiO2 system in a considerable extent. Addition of MWCNTs increased the extent of cure of the corresponding nanocomposites, especially at higher contents up to 0.4 wt% MWCNT filled composite. However, increasing the MWCNT content to 0.6 wt% adversely affected the extent of cure due to nanoparticle agglomeration. The fracture surface morphology of the nanocomposites revealed that the cracks deviated on reaching the MWCNTs, while propagating in the polymer matrix. Fractional extent of conversion (α) was calculated using genetic algorithm. Flynn–Wall–Ozawa and Kissinger methods were used to analyze the kinetic parameters. The presence of MWCNTs did not affect the autocatalytic cure mechanism of epoxy/amine/TiO2 resin system and also did not cause any considerable barrier effect on the curing process. Activation energy data fitted well in the cubic polynomial regression equations and the changes of E a with respect to α proved the autocatalytic cure mechanism, being followed by all the MWCNT-containing epoxy-based hybrid nanocomposites.  相似文献   

16.
A new negative temperature coefficient of resistor (NTCR) thermistors based on nitrile butadiene rubber/magnetite (NBR/Fe3O4) nanocomposites were successfully fabricated by conventional roll milling technique. X‐ray diffraction and transmission (TEM) analysis showed that the product is mainly magnetite nanoparticles with diameter of 10‐13 nm. The microstructure of (NBR/Fe3O4) nanocomposites were examined by scanning electron microscopy (SEM) and FTIR spectroscopy. The dispersion of magnetite nanoparticles in the NBR rubber matrix and interfacial bonding between them were rather good. The thermal stability of nanocomposites was also obviously improved with the inclusion of the magnetite nanoparticles. The thermal conductivity, thermal diffusivity and specific heat of nanocomposites were investigated. The electrical conductivity of the NBR/Fe3O4 increases with the rise in temperature exhibiting a typical negative temperature coefficient of resistance (NTCR) behavior like a semiconductor. The nature of the temperature variation of electrical conductivity and values of activation and hopping energy, suggest that the transport conduction process is controlled by hopping mechanism. Values of characteristics parameters of the thermistors like thermistor constant, thermistor sensitivity and thermistor stability is quite good for practical application as NTCR devices at high temperature. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
In order to obtain efficient microwave absorbers that possess high conductivity, dielectric and magnetic properties, hexanoic acid doped polyaniline (PAni) nanocomposites which contain different ratios of ferum (II) oxide (Fe3O4) and titanium dioxide (TiO2) nanoparticles were successfully prepared by in situ chemical polymerization through template free method. Chemical structure, conductivity, morphology, thermal stability, magnetic properties, and amorphous/crystalline behavior of PAni nanocomposites were characterized by Fourier transform infrared spectrometer (FTIR), four point probe, field emission scanning electron microscope (FESEM), thermal gravimetric analysis (TGA), vibrating samples magnetometer (VSM), and X‐ray diffractometer (XRD), respectively. From this study, conductivity was significantly improved from 8.48 × 10−4−1.23 × 10−2 S/cm for PAni nanocomposites without any chemical treatment (during addition of Fe3O4) to 3.58 × 10−2−4.77 × 10−2 S/cm for those with chemical treatment. PAni nanocomposites with chemical treatment show a narrow sharp reflection loss (RL) peak with high absorption (−48.9 dB) at lower frequency due to the limited individual Fe3O4 nanoparticles outside the nanorods/nanotubes as proved by the new proposed mechanism (Fig. 5 ), while it shows a broad RL peak with poor absorption (−13 dB) at higher frequency for those without chemical treatment. The novelty of this research has been focused on PAni with chemical treatment which yield better microwave absorption property (99.999% absorption), combination of high conductivity (3.58 × 10−2−4.77 × 10−2 S/cm), high heterogeneity and moderate magnetization (Ms = 8.87–28.49 emu/g) compare to the PAni without chemical treatment. POLYM. COMPOS., 34:1186–1194, 2013. © 2013 Society of Plastics Engineers  相似文献   

18.
《Ceramics International》2022,48(2):1820-1826
High-temperature thermal storage materials have received urgent attention for efficient thermal transfer in solar thermal power generation. Corundum ceramics doped with Fe2O3 and TiO2 were prepared via a pressureless sintering. A Fe2O3–TiO2 system with different Fe2O3/TiO2 ratios was applied to corundum ceramics. Phase composition, microstructural evolution, sintering properties, high temperature resistance and thermophysical properties were evaluated. The results indicated that Fe2O3 and TiO2 rendered the grains highly active and enhanced the bonding between grains due to existing stably in the lattice of corundum. In addition, decrease in the Fe2O3/TiO2 ratio led to a new phase of FeAlTiO5, which refined the grains. These effects gave the samples good sintering properties and thermal shock resistance, but the thermal expansion coefficient mismatch between FeAlTiO5 and corundum deteriorated the high-temperature (1300 °C) stability. Formula C1 (Fe2O3/TiO2 ratio of 9:1) sintered at 1600 °C had the optimum comprehensive properties, possessing a bending strength loss rate of 1.54% after 30 cycles of thermal shock (1100 °C-room temperature, air cooling) and a constant strength retention rate of approximately 71.34% after 90 h high-temperature cycle. The corresponding thermal conductivity and specific heat capacity were 18.81 W/(m·K) and 1.02 J/(g·K) at 25 °C, which was suitable as a high-temperature thermal storage material.  相似文献   

19.
《Ceramics International》2020,46(10):16480-16492
Transition metal oxide nanoparticles (CuO, ZnO & Fe2O3) and mixed metal oxides CuO. ZnO.Fe2O3 were fabricated by facile co-precipitation approach for photocatalytic treatment of organic dyes. The structural features, phase purity, crystallite size and morphology of individual and mixed metal oxides were analysed by X-rays diffraction patterns (XRD) and scanning electron microscopic (SEM) analysis. Electrical behaviour of CuO, ZnO, Fe2O3 and mixed metal oxides CuO. ZnO.Fe2O3 was explored by current-voltage (I-V) measurements. Functional groups present in the synthesized metal oxides were investigated by Fourier transform infrared spectroscopy (FTIR) which ensures the existence of M-O functional groups in the samples. The optical bandgap analysis was carried out by UV–visible spectroscopic technique which revealed that the blend of three different transition metal oxides reduced the bandgap energy of mixed metal oxides. The reason behind this reduced bandgap energy is formation of new electronic state which arises due to the metal-oxygen interactions. Moreover, the nanocomposites of CuO.ZnO.Fe2O3 with reduced graphene oxide (rGO) and carbon nanotubes (CNTs) were prepared to study the effect of the carbonaceous materials on the rate of photodegradation. These carbonaceous nanomaterials have plethora properties which can bring advancement in sector of photocatalytic treatment of wastewater. The photocatalytic experiments were performed using methylene blue (MB) as standard dye for comparative study of metal oxides and their composites with rGO and CNTs. The percentage degradation of methylene blue (MB) by nanocomposite CuO.ZnO.Fe2O3/rGO is 87% which is prominent among all samples. This result ascribed the photocatalytic aspects of reduced graphene oxide along with mixed metal oxides.  相似文献   

20.
《Ceramics International》2020,46(10):15925-15934
Herein, reduced graphene oxide/cobalt-zinc ferrite (RGO/Co0.5Zn0.5Fe2O4) hybrid nanocomposites were fabricated by a facile hydrothermal strategy. Results revealed that the contents of RGO could affect the micromorphology, electromagnetic parameters and electromagnetic wave absorption properties. As the contents of RGO increased in the as-synthesized hybrid nanocomposites, the dispersibility of the particles was improved. Meanwhile, numerously ferromagnetic Co0.5Zn0.5Fe2O4 particles were evenly anchored on the wrinkled surfaces of flaky RGO. Besides, the obtained hybrid nanocomposites exhibited superior electromagnetic absorption in both X and Ku bands, which was achieved by adjusting the RGO contents and matching thicknesses. Significantly, when the content of RGO was 7.4 wt%, the binary nanocomposites showed the optimal reflection loss of -73.9 dB at a thickness of 2.2 mm and broadest effective absorption bandwidth of 6.0 GHz (12.0–18.0 GHz) at a thin thickness of merely 2.0 mm. The enhanced electromagnetic absorption performance was primarily attributed to the multiple polarization effects, improved conduction loss caused by electron migration, and magnetic loss derived from ferromagnetic Co0.5Zn0.5Fe2O4 nanoparticles. Our results could provide inspiration for manufacturing graphene-based hybrid nanocomposites as high-efficient electromagnetic wave absorbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号