首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were conducted on sandy loam soils of Tirupati campus of Andhra Pradesh Agricultural University for two rainy seaons of 1980 and 1981 to study the effect of split application of NPK fertilizers on Spanish bunch groundnut. The fertilizer doses were 40 N, 20 P and 40 K kg ha–1 in 1980 and 30 N, 10 P and 25 K kg ha–1 in 1981.In 1980, uptake of N (48 kg ha–1), P (7 kg ha–1) and K (37 kg ha–1) was maximum with the application of 10 N, 5 P and entire 40 K kg ha–1 as basal and 30 N and 15 P kg ha–1 at 30 days after sowing, leading to highest pod yield (0.76 t ha–1). In 1981, application of 20 N, 10 P and 25 K kg ha–1 as basal dose and 20 N kg ha–1 at 30 days after seeding resulted in highest uptake of N (114 kg ha–1), P (17 kg ha–1) and K (58 kg ha–1) and hence the pod yield (2.36 t ha–1).Differences in the uptake of NPK and pod yield in 1980 and 1981 was due to variation in total rainfall and its distribution during the crop period. Rainfall was equally distributed throughout the crop period in 1981, whereas there were two prolonged dry spells of more than 40 days in 1980.  相似文献   

2.
A field experiment was conducted to investigate the effects of winter management and N fertilization on N2O emission from a double rice-based cropping system. A rice field was either cropped with milk vetch (plot V) or left fallow (plot F) during the winter between rice crops. The milk vetch was incorporated in situ when the plot was prepared for rice transplanting. Then the plots V and F were divided into two sub-plots, which were then fertilized with 276 kg urea-N ha–1 (referred to as plot VN and plot FN) or not fertilized (referred to as plot VU and plot FU). N2O emission was measured periodically during the winter season and double rice growing seasons. The average N2O flux was 11.0 and 18.1 g N m–2 h–1 for plot V and plot F, respectively, during winter season. During the early rice growing period, N2O emission from plot VN averaged 167 g N m–2 h–1, which was eight- to fifteen-fold higher than that from the other three treatments (17.8, 21.0 and 10.8 g N m–2 h–1 for plots VU, FN, and FU, respectively). During the late rice growing period, the mean N2O flux was 14.5, 11.1, 12.1 and 9.9 g N m–2 h–1 for plots VN, VU, FN and FU, respectively. The annual N2O emission rates from green manure-double rice and fallow-double rice cropping systems were 3.6 kg N ha–1 and 1.3 kg N ha–1, respectively, with synthetic N fertilizer, and were 0.99 kg N ha–1 and 1.12 kg N ha–1, respectively, without synthetic N fertilizer. Generally, both green manure N and synthetic fertilizer N contribute to N2O emission during double rice season.  相似文献   

3.
Anadequate supply of N for a crop depends among others on the amounts of N thataremineralized from the soil organic matter plus the supply of ammonium andnitrateN already present in the soil. The objective of this study was to determine thebehaviour of light fraction organic N (LFN), NH4-N, NO3-Nand total N (TN) in soil in response to different rates of fertilizer Napplication. The 0–5, 5–10, 10–15 and 15–30cm layers of a thin Black Chernozemic soil under bromegrass(Bromus inermis Leyss) at Crossfield, Alberta, Canada,weresampled after 27 annual applications of ammonium nitrate at rates of 0, 56,112,168, 224 and 336 kg N ha–1. The concentration andmass of TN and LFN in the soil, and the proportion of LFN mass within the TNmass usually increased with N rates up to 224 kg Nha–1. The increase in TN mass and LFN mass per unit ofNadded was generally maximum at 56 kg N ha–1 anddeclined with further increases in the rate of N application. The percentchangein response to N application was much greater for the LFN mass than for the TNmass for all the N rates and all soil depths that were sampled. Mineral N intheform of NH4-N and NO3-N did not accumulate in the soil at 112 kg N ha–1 rates, whereas theiraccumulation increased markedly with rates of 168 kg Nha–1. In conclusion, long-term annual fertilization at 112 kg N ha–1 to bromegrass resulted insubstantial increase in the TN and LFN in soil, with no accumulation ofNH4-N and NO3-N down the depth. The implication of thesefindings is that grasslands for hay can be managed by appropriate Nfertilization rates to increase the level of organic N in soil.  相似文献   

4.
The quantities of nitrogen, phosphorus and potassium supplied by an average African soil cleared from bush fallow, assuming no losses, were approximated. Values ranged from 23 to 120 Kg N ha–1, 1.8 to 12 Kg P ha–1, 47 to 187 Kg K ha–1, depending on type of fallow, length of fallow, drainage and extent of depletion of native supplies. Additional amounts of 4 to 5 Kg N ha–1, 4 to 6 Kg P ha–1 and 14 to 20 Kg K ha–1 are obtained from the ash.Using crop nutrient removal data and approximate efficiencies of native and fertilizer N, P and K, fertilizer requirements at the reconnaissance level were estimated for selected target yields. For newly cleared uplands at cropping/fallow ratio of 2:7, N fertilizer requirements for cassava (30 t ha–1), maize (4 t ha–1), and sweet potato (16 t ha–1), were 138, 98, 42 kg ha–1 respectively. Wetland rice (4 t ha–1) required 55 kg N ha–1. Corresponding P fertilizer requirements for cassava, maize, sweet potato, upland rice (1.5 t ha–1) and ground-nut (1 t ha–1) were 190, 80, 30, 30 and 16 kg P ha–1 respectively. Wetland rice required 83 kg P ha–1. Substantial residual values of applied P are to be expected. Cassava required 60 kg ha–1 of K on newly cleared land. In soils of lowered nutrient status higher N, P, and K fertilizer requirements were indicated for all crops.Land use data from Sierra Leone were used to illustrate how the total quantities of N, P and K fertilizers in a country in the forest zone of Africa can be approximated. Fertilizer needs in Sierra Leone were in decreasing order P > N K. N, P and K requirements were estimated to be 10,000 t, 20,000 t and 4,000 t respectively. The nutrient balance sheet method described in this paper is a useful tool to estimate the order of magnitude of fertilizer requirement at selected target yields for countries in Africa.  相似文献   

5.
Brazil has approximately 30 million hectares of lowland areas, known locally as Varzea, but very little is known about their fertility and crop production potential. A field experiment was conducted for three consecutive years to evaluate response of lowland rice (Oryza sativa L.) grown in rotation with common bean (Phaseolus vulgaris L.) on a Varzea (low, Humic Gley) soil. Rice was grown at low (no fertilizer), medium (100 kg N ha–1, 44 kg P ha–1, 50 kg K ha–1, 40 kg FTE-BR 12 ha–1), and high (200 kg N ha–1, 88 kg P ha–1, 100 kg K ha–1, 80 kg FTE-BR 12 ha–1 fritted trace element-Brazil 12 as a source of micronutrients) soil fertility levels. Green manure with medium fertility was also included as an additional treatment. Average dry matter and grain yields of rice and common bean were significantly (P < 0.01) increased with increasing fertilization. Across the three years, rice yield was 4327 kg ha–1 at low fertility, 5523 kg ha–1 at medium fertility, 5465 kg ha–1 at high fertility, and 6332 kg ha–1 at medium fertility with green manure treatment. Similarly, average common bean yield was 294 kg ha–1 at low soil fertility, 663 kg ha–1 at medium soil fertility, 851 kg ha–1 at high fertility, and 823 kg ha–1 at medium fertility with green manure treatment. Significant differences in nutrient uptake in bean were observed for fertility, year, and their interactions; however, these factors were invariably nonsignificant in rice.  相似文献   

6.
Application of adequate level of K has shown to improve the competitive ability of the legume in legume/grass mixtures. However, the effect of K on the competitive ability of grain legumes in legume/cereal intercropping systems has not been adequately studied. Hence, studies were made to ascertain if the effects of K could be exploited in improving the performance of groundnut (Arachis hypogaea L.) cv. No. 45 when intercropped with maize (Zea mays L.) cv. Badra. The study was conducted at the Faculty of Agriculture, University of Ruhuna, Kamburupitiya, Sri Lanka in 1988 in basins filled with 36 kg of soil. It involved establishing maize and groundnut as monocrops and as intercrops at three K levels viz. 0, 20 and 40 mg of K kg–1 of soil. Monocrop maize and groundnut had 2 and 5 plants/basin, respectively while the intercrop had 1 maize plant and 3 groundnut plants/basin. The soil used was Red Yellow Podzolic which was tagged by incorporating15N-labelled plant material. When grown as a monocrop, K had no effect on the percent N derived from atmosphere, amount of N2 fixed, dry matter production, pod yield and total N content of groundnut. However, when intercropped with maize lack of K application affected the above parameters significantly which was overcome by improving K level. Thus, the optimum level of K for groundnut was greater when intercropped than monocropped. A significant interaction between K level and cropping system was evident with regard to N2 fixation, pod yield and total dry matter production of groundnut. Intercrop maize derived 30–35% of its N content from the associated groundnut plants which amounted to 13–22 mg N/plant. The amount of N supplied by groundnut to associated maize plant was not affected by K level. It appears that there is scope for alleviating growth depression of the legume component in legume/cereal intercropping systems by developing appropriate K fertilizer practices.  相似文献   

7.
Market opportunities will drive intensification of cassava production and fertilizer will play a role in this. A trial was initiated on 15 farmers fields (replications) in one village territory in Benin on a relatively fertile sedimentary soil site to identify nutrients limiting cassava yield using nutrient omission plots over three cropping years. There was no response to fertilizer in the first year when fresh root yields in the unamended control averaged 19.1 t ha–1. In the second year, the control yield was 16 t ha–1 and there were significant reductions from withholding P (3.5 t ha–1) and K (2 t ha–1) from a complete fertilizer regime. Nutrient balance after 1 and 2 years (cumulative) showed substantial P and K deficits in unamended plots. In the third year, the control yield was 12.9 t ha–1 and effects of withholding K (5.3 t ha–1), P (5.0 t ha–1) and N (3.0 t ha–1) were statistically significant. Soil K was a significant source of variation in yield in the third year. In the third year of annual nutrient additions soil P and K in the top 0.3 m were increased by 37 and 40%, respectively. Based on the cumulative nutrient balance calculation, the annual application needed to compensate nutrient depletion was 13 kg N, 10 kg P, and 60 kg K ha–1. Partial budget analysis based on these amounts of fertilizer suggested that investment was clearly justified in the third year of continuous cropping at current low cassava prices.  相似文献   

8.
The DAISY soil–plant–atmosphere model was used to simulate crop production and soil carbon (C) and nitrogen (N) turnover for three arable crop rotations on a loamy sand in Denmark under varying temperature, rainfall, atmospheric CO2 concentration and N fertilization. The crop rotations varied in proportion of spring sown crops and use of N catch crops (ryegrass). The effects on CO2 emissions were estimated from simulated changes in soil C. The effects on N2O emissions were estimated using the IPCC methodology from simulated amounts of N in crop residues and N leaching. Simulations were carried out using the original and a revised parameterization of the soil C turnover. The use of the revised model parameterization increased the soil C and N turnover in the topsoil under baseline conditions, resulting in an increase in crop N uptake of 11 kg N ha–1 y–1 in a crop rotation with winter cereals and a reduction of 16 kg N ha–1 y–1 in a crop rotation with spring cereals and catch crops. The effect of increased temperature, rainfall and CO2 concentration on N flows was of the same magnitude for both model parameterizations. Higher temperature and rainfall increased N leaching in all crop rotations, whereas effects on N in crop residues depended on use of catch crops. The total greenhouse gas (GHG) emission increased with increasing temperature. The increase in total GHG emission was 66–234 kg CO2-eq ha–1 y–1 for a temperature increase of 4°C. Higher rainfall increased total GHG emissions most in the winter cereal dominated rotation. An increase in rainfall of 20% increased total GHG emissions by 11–53 kg CO2-eq ha–1 y–1, and a 50% increase in atmospheric CO2 concentration decreased emissions by 180–269 kg CO2-eq ha–1 y–1. The total GHG emissions increased considerably with increasing N fertilizer rate for a crop rotation with winter cereals, but remained unchanged for a crop rotation with spring cereals and catch crops. The simulated increase in GHG emissions with global warming can be effectively mitigated by including more spring cereals and catch crops in the rotation.  相似文献   

9.
Mineral fertilizer use is increasing in West Africa though little information is available on yield response in farmers' fields. Farmers in this region plant at low density (average 5,000 pockets ha–1, 3 plants pocket–1), which can affect fertilizer use efficiency. A study was conducted with 20 farmers in Niger to assess the response of pearl millet [Pennisetum glaucum (L.) R. Br.] to phosphorus and nitrogen fertilizers under farm conditions. In each field, treatments included control, single superphosphate (SSP) only, SSP plus N (point placed near plant), and either SSP or partially acidulated phosphate rock (PAPR) plus N broadcast. N and P were applied at 30 kg N ha–1 and 30 kg P2O5 ha–1. Farmers were allowed to plant, weed, etc., as they wished and they planted at densities ranging from 2,000 to 12,000 pockets ha–1. In the absence of fertilizer, increasing density from 2,000 to 7,000 pockets ha–1 increased yield by 400%. A strong interaction was found between fertilizer use and density. Farmers planting at densities less than 3,500 pockets ha–1 had average yields of 317 kg grain ha–1 while those planting at densities higher than 6,500 pockets ha–1 showed average yields of 977 grain ha–1. Though phosphate alone increased yields significantly at all densities, little response to fertilizer N was found at densities below 6,000 pockets ha–1. Significant residual responses in 1987 and 1988 were found to P applied in high-density plots in 1986. Depending on fertilizer and grain prices, analysis showed that fertilizer use must be be combined with high plant density (10,000 pockets ha–1) or no economic benefit from fertilizer use will be realized.  相似文献   

10.
Up until now, potash fertilization has not been part of the recommended practices for groundnut production in Nigeria and only low levels of P are recommended in line with the level of agricultural technology available to the farmer. The change from the traditional non-intensive farming practice to continuous intensive cultivation coupled with the introduction of better yielding/more-nutrient demanding crop varieties have led to a deficiency of a number of nutrients.Field experiments were carried out for 5 years (repeated on the same sites) at 8 locations in northern Nigeria to evaluate the effect of four levels of phosphorus (0, 8, 16 and 24 kg P ha–1) and three levels of potassium (0, 20, and 40 kg K ha–1) on yield and related parameters in groundnut. Soils at the various sites were essentially loamy sands with low levels of organic carbon and cation exchange capacity.The yield levels in the Guinea savannah were generally higher than those in the Sudan savannah but the response pattern was the same. There was significant response to applied P up to 24 kg P ha–1. Potash applied at 20 kg K ha–1 produced significantly higher pod yields than the control plots, but higher rates of applied K did not result in any further significant yield increase, although there was a clear consistent trend towards higher yields as the K rates increased. Phosphate X potash interaction had no significant effect on yield.Except for K, the uptake of all nutrients were significantly increased by P levels. However, only the K content of haulms and the N content of kernels were significantly increased by K application. On the average, about 58% of N, 68% of P, 19% of K, 5% of Ca and 22% of Mg were contained in the kernels while 27% of N, 23% of P, 64% of K, 83% of Ca and 69% of Mg were contained in the haulms. The implication of this is that the complete removal of groundnut residue will deplete the soil cation reverves rapidly unless these losses are compensated through fertilizer use.  相似文献   

11.
The response of two okra (Abelmoschus esculentus L. Moench) varieties (White velvet and NHAE 47-4) to fertilization in northern Nigeria was examined using four rates of nitrogen (0, 25, 50 and 100 kg ha–1) and three rates of phosphorus (0, 13 and 26 kg ha–1). Nitrogen application significantly increased green pod yield, pod diameter, number of fruits per plant, number of seeds per pod and pod weight. Application of phosphorus also significantly increased green pod yield, pod number and number of seeds per pod. The two varieties responded to nitrogen application differentially with respect to green pod yield. For optimum green pod yield of White velvet 35 kg N ha–1 is suggested while for variety NHAE 47-4, N fertilization can be increased to 70 kg ha–1. There was no differential response of varieties to phosphorus fertilization for green pod yield; however, the application of 13 kg ha–1 enhanced the performance of both varieties.  相似文献   

12.
Rice-flooding fallow, rice-wheat, and double rice-wheat systems were adopted in pot experiment in an annual rotation to investigate the effects of cropping system on N2O emission from rice-based cropping systems. The annual N2O emission from the rice-wheat and the double rice-wheat cropping systems were 4.3 kg N ha–1 and 3.9 kg N ha–1, respectively, higher than that from rice-flooding fallow cropping system, 1.4 kg N ha–1. The average N2O flux was 115 and 118 g N m–2 h–1 for rice season in rice-wheat system and early rice season in double rice-wheat system, respectively, 68.6 and 35.3 g N m–2 h–1 for the late rice season in double rice-wheat system and rice season in rice-flooding fallow, respectively, and only 3.1–5.3 g N m–2 h–1 for winter wheat or flooding fallow season. Temporal variations of N2O emission during rice growing seasons differed and high N2O emission occurred when soil conditions changed from upland crop to flooded rice.  相似文献   

13.
Information on the fate and distribution of surface-applied fertilizer P and K in soil is needed in order to assess their availability to plants and potential for water contamination. Distribution of extractable P (in 0.03 M NH4F + 0.03 M H2SO4 solution) and exchangeable K (in neutral 1.0 M ammonium acetate solution) in the soil as a result of selected combinations of 30 years (1968–1997) of N fertilization (84–336 kg N ha–1), 10 years of P fertilization (0–132 kg P ha–1), and 14 years of K fertilization (0 and 46 kg K ha–1) was studied in a field experiment on a thin Black Chernozem loam under smooth bromegrass (Bromus inermis Leyss.) at Crossfield, Alberta, Canada. Soil samples were taken at regular intervals in October 1997 from 0–5, 5–10, 10–15, 15–30, 30–60, 60–90 and 90–120 cm layers. Soil pH decreased with N rate and this declined with soil depth. Increase in extractable P concentration in the soil reflected 10 years of P fertilization relative to no P fertilization, even though it had been terminated 20 years prior to soil sampling. The magnitude and depth of increase in extractable P paralleled N and P rates. The extractable P concentration in the 0–5 cm soil layer increased by 2.2, 20.7, 30.4 and 34.5 mg P kg–1 soil at 84, 168, 280 and 336 kg N ha–1, respectively. The increase in extractable P concentration in the 0–15 cm soil depth was 1.5 and 12.8 mg P kg–1 soil with application of 16 and 33 kg P ha–1 (N rate of 84 N ha–1 for both treatments), respectively; and it was 81.6 and 155.2 mg P kg–1 soil with application of 66 and 132 kg P ha–1 (N rate of 336 N ha–1 for both treatments), respectively. The increase in extractable P at high N rates was attributed to N-induced soil acidification. Most of the increase in extractable P occurred in the top 10-cm soil layer and almost none was noticed below 30 cm depth. Surface-applied K was able to prevent depletion of exchangeable K from the 0–90 cm soil, which occurred with increased bromegrass production from N fertilization in the absence of K application. As only a small increase of exchangeable K was observed in the 10–30 cm soil, 46 kg K ha–1 year–1 was considered necessary to achieve a balance between fertilization and bromegrass uptake for K. The potential for P contamination of surface water may be increased with the high N and P rates, as most of the increase in extractable P occurred near the soil surface.  相似文献   

14.
A case study on the nutrient input-output budget of slash and burn agriculture was carried out in Northeast-Pará, Brazil, where such a land-use system has been practised for about 100 years. A common cropping period lasts for two years and the fields lie fallow for 4 to 8 years. We quantified rates of deposition, fertilization, and losses due to the burn, harvest and leaching. Six fields of different phases in the rotational cycle were under study during a 19 month period. During the fallow period, the input of Na, K, Mg, N, P and S via deposition exceeded the estimated losses with the seepage water. The Ca budget was almost balanced. The balance of fields in the transition from the fallow to the cropping phase was negative for Na, K, Ca, Mg, N, and S. The P balance was positive when NPK fertilizer was applied, and negative without fertilizer application. The nutrient balance for K, Mg, Ca, N, and P was also negative on the field in transition from the cropping to the fallow period. The nutrient budget for an entire land-use cycle of 9 years was estimated by the false time series approach. In the case of an NPK fertilization during the cropping period there were net losses of 75 kg K ha–1, 125 kg Ca ha–1, 16 kg Mg ha–1, 285 kg N ha–1 and 13 kg S ha–1. Na (86 kg ha–1) and P (11 kg ha–1) were accumulated. The harvest was the most important flux for the K (61%) and P (62%) output. The element transfer into the atmosphere during the burn caused the main losses of N (60%), S (65%), Ca (58%) and Mg (41%). The most important path of Na loss was leaching (92%). The net K losses were severe as they represented 45% of the K store found extractable in the soil down to 1m depth and in the above ground biomass. The presented results may be useful in planning a sustainable and environmentally protective method of land-use within a shifting cultivation system. It is strongly recommended that slash burning be abandoned in order to keep the nutrients in the ecosystem.  相似文献   

15.
A four-year field experiment was conducted to compare conventional fertilization by broadcasting granular material with a combination broadcast/fertigation program. The experiment was conducted on mature Ruby Red grapefruit trees in a south Florida Flatwoods grove. The conventional fertilization (CONV) consisted of broadcast applications 3 times per year (Feb/Mar, May/Jun, Oct/Nov). The combination treatment (COMB) had a broadcast application of 33% of the annual N and K20 in Feb/Mar followed by the remainder applied as fertigation at 2-week intervals beginning in April. The CONV plots received 33% of the annual N and K20 (plus minor elements) during an application in late winter plus additional applications, each with a third of the annual N and K20 in the May/June and Oct/Nov time periods. During the four-year period, the COMB trees out-produced the CONV trees in 3 of the 4 years. The 4-year cumulative fresh fruit yield advantage of the COMB trees averaged 4150 kg ha–1 (108 boxes ha–1) per year advantage over the CONV program. The cumulative total soluble solids (TSS) produced over four years with the COMB trees averaged 10.9 Mg ha–1 versus 10.1 Mg ha–1 for the CONV treatment. The production increases by the COMB treatment over the CONV program represent 8% and 9% advantages for the TSS and fruit yield, respectively. The combination dry + fertigation treatment provided a higher fertilizer use efficiency (greater production for similar application rates) than the conventional dry broadcast applications alone.  相似文献   

16.
Use of15N-depleted fertilizer materials have been primarily limited to fertilizer recovery studies of short duration. The objective of this study was to determine if15N-depleted fertilizer N could be satisfactorily used as a tracer of residual fertilizer N in plant tissue and various soil N fractions through a corn (Zea mays L.) -winter rye (Secale cereale L.) crop rotation. Nitrogen as15N-depleted (NH4)2SO4 was applied at five rates (0, 84, 168, 252, and 336 kg N ha–1) to corn. Immediately following corn harvest a winter rye cover crop treatment was initiated. Residual fertilizer N was easily detected in the soil NO 3 - -N fraction following corn harvest (140-d after application). Low levels of exchangeable NH 4 + -N (<2.5 mg kg–1) did not permit accurate isotope-ratio analysis. Fertilizer-derived N recovered in the soil total N fraction following corn harvest was detectable in the 0 to 30-cm depth at each N rate and in the 30 to 60 and 60 to 90-cm depths at the 336 kg ha–1 N rate. Atom %15N concentrations in the nonexchangeable NH 4 + -N fraction did not differ from the control at each N rate. Nitrogen recovery by the winter rye cover crop reduced residual soil NO 3 - -N levels below the 10 kg ha–1 level needed for accurate isotope-ratio analysis. Atom %15N concentrations in the soil total N fraction (approximately one yr after application) were indistinguishable from the control plots below the 168, 252, and 336 kg ha–1 N rate at the 0 to 30, 30 to 60, and 60 to 90-cm depths, respectively. Recovery of residual fertilizer N by the winter rye cover crop was verified by measuring significant decreases in atom %15N concentrations in rye tissue with increasing N rates. The greatest limitation to the use of15N-depleted fertilizer N as a tracer of residual fertilizer N in a corn-rye crop rotation appears to be its detectibility from native soil N in the total N pool.Research partially supported by grants from the National Fertilizer and Environmental Research Center/TVA and the Virginia Division of Soil and Water Conservation.  相似文献   

17.
The effect of phosphorus (P) fertilization on dry matter production and nitrogen (N) uptake of groundnut (Arachis hypogaea L.) was studied during the growing seasons of 1989, 1990 and 1991 under rainfed conditions on an acid sandy soil in Niger, West Africa. Annual application of 16 kg P ha–1 as single superphosphate (SSP) failed to increase the total dry matter production significantly in all three years.Fertilization with SSP increased the concentrations of P and sulfur (S) in shoots from deficiency to sufficiency levels. It decreased the already very low concentrations of molybdenum (Mo), especially in the nodules, and also the N concentration in the shoot dry matter.With SSP application, total N uptake declined over three years. Foliar application of P and soil application of triple superphosphate (TSP) enhanced dry matter production, N and Mo uptake.Although these acid sandy soils are known to be deficient in P and S, care must be taken in using SSP in groundnuts as it may induce Mo deficiency, unless supplementary Mo is applied.ICRISAT Journal Article No. 1230  相似文献   

18.
Researches on the mineral nutrition and fertilizer response of grain sorghum (Sorghum bicolor (L) Moench) carried out during the last 25 years in India are reviewed here. In general, N,P,K, Fe and Mn concentrations in vegetative plant parts decreased with crop age, while the concentrations of Ca, Mg and Cu increased. The concentration of N and P increased in panicle or grains of sorghum with advance in crop age. The seasonal change for other nutrients has not, however, been studied.Accumulation and uptake of N,P, and K by grain sorghum were characterized. Usually N and P accumulated slowly compared with the rapid accumulation of K in early crop growth stage and vice-versa in later stages of growth. As against the sizable mass of N and P into panicle, K was partitioned into stalk.Fertilizer responses to N and P were observed throughout India. Improved varieties and hybrids of sorghum responded to N rates ranging from 60 to 150 kg N ha–1, whereas a response to P application was observed up to 40 kg P ha–1. Although responses to K application had been inconsistent, an increase in grain yield of sorghum was observed due to 33 kg K ha–1. A balanced fertilizer schedule consisting of 120 kg N ha–1, 26 kg P ha–1, 33 kg K ha–1 and 15–25 kg Zn504 ha–1 is recommended for improved productivity of grain sorghum.It is concluded that systematic research efforts should be directed so as to identify problem soils showing deficiencies and toxicities of different nutrients. Characterization of the seasonal changes in the concentration and uptake of different nutrients and determination of critical concentration and hidden hunger of different nutrients in plant tissues would lead to the recommendation of balanced fertilization for different sorghum-growing regions in India.A part of the paper presented in the Silver Jubliee Conference of Indian Society of Agronomy held at H.A.U., Hissar (India) in March, 1981  相似文献   

19.
No extensive investigation on the effect of fertilizers on Amazon cocoa variety (Theobroma cacao L.) has been performed in Nigeria. Therefore eight fertilizer treatments involving nitrogen and phosphorus, replicated six times at four locations across southern Nigeria, were established in 1973. The four N levels (N0, N1, N2, N3) involved were 0, 80, 160 and 240 kg ha–1 y–1, and the two P levels (P0, P1) were 0 and 67 kg ha–1 y–1. Results of the first 5 years of fertilizer application are reported. Response to P was observed at all locations, and the response was statistically significant at 2 of the locations. There was no response to the application of nitrogen. The data suggest, however, that there is only a response to phosphorus when nitrogen is applied.  相似文献   

20.
Field studies on the substitution of N and P fertilizers with farm yard manure (FYM) and their effect on the fertility status of a loamy sand soil in rice—wheat rotation are reported. The treatments consisted of application of 12 t FYM ha–1 in combination with graded levels of N and P. Application of fertilizer N, FYM and their different combinations increased the rice yield significantly. There was no significant response to P application. The magnitude of response to the application of 12 t FYM and its combined use with each of 40 kg and 80 kg N ha–1 was 0.7, 2.2 and 3.9 t ha–1 respectively. Application of 120 kg N ha–1 alone increased the yield by 3.9 t ha–1, and was comparable to rice yield obtained with 80 kg N and 12 t FYM ha–1. This indicated that 12 t FYM ha–1 could be substituted for 40 kg N as inorganic fertilizer in rice. In addition FYM gave residual effects equivalent to 30 kg N and 13.1 kg P ha–1 in the succeeding wheat. The effect of single or combined use of inorganic fertilizers and FYM was significantly reflected in the build up of available N, P, K and organic carbon contents of the soil. The relationship for predicting rice yield and nutrients uptake were also computed and are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号