首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LiBH4 has a high hydrogen storage capacity and could potentially serve as a superior hydrogen storage material. However, during the hydrolysis process for hydrogen generation, the agglomeration of the hydrolysis product of LiBH4 limits its full utilization. In order to completely release the stoichiometric amount of H2 from LiBH4 hydrolysis, multiwalled carbon nanotubes (MWCNTs) were doped with LiBH4 by mechanical milling. The results show that MWCNT carried LiBH4 can slowly react with water vapor at room temperature which is 25 °C lower than the reaction temperature of neat LiBH4. Agglomeration can be avoided when the addition of MWCNTs exceeds 7 wt.%, which results in a complete hydrolysis process. The total hydrogen capacity is 7.5 wt.%. The enhanced hydrolysis of LiBH4 can be attributed to the MWCNTs which increased the contact areas between LiBH4 and water and created gas channels for hydrogen diffusion. The performance of a micro proton exchange membrane fuel cell connected to MWCNT-doped LiBH4 powder packed-bed reactor was examined. The result demonstrates that doping with MWCNTs enhanced the hydrogen generation of LiBH4 hydrolysis. MWCNT-doped LiBH4 can be applied as hydrogen source of fuel cells.  相似文献   

2.
Mechanically milling ammonia borane and lithium borohydride in equivalent molar ratio results in the formation of a new complex, LiBH4·NH3BH3. Its structure was successfully determined using combined X-ray diffraction and first-principles calculations. LiBH4·NH3BH3 was carefully studied in terms of its decomposition behavior and reversible dehydrogenation property, particularly in comparison with the component phases. In parallel to the property examination, X-ray diffraction and Fourier transformation infrared spectroscopy techniques were employed to monitor the phase evolution and bonding structure changes in the reaction process. Our study found that LiBH4·NH3BH3 first disproportionates into (LiBH4)2·NH3BH3 and NH3BH3, and the resulting mixture exhibits a three-step decomposition behavior upon heating to 450 °C, totally yielding ∼15.7 wt% hydrogen. Interestingly, it was found that h-BN was formed at such a moderate temperature. And owing to the in situ formation of h-BN, LiBH4·NH3BH3 exhibits significantly improved reversible dehydrogenation properties in comparison with the LiBH4 phase.  相似文献   

3.
A novel lithium amidoborane borohydride complex, Li2(NH2BH3)(BH4), was synthesized using mechanochemical method and its crystal structure was successfully determined by a combination of X-ray diffraction (XRD) analysis and first-principles calculations. Interestingly, this compound does not exist as a pure phase, but requires almost equivalent amount of amorphous LiAB as a stabilizing agent. In this paper, we report a careful study of the structure, property, and dehydrogenation mechanism of the 1:1 Li2(NH2BH3)(BH4)/LiAB composite. This composite can release ∼8 wt% H2 at 100 °C via a two-step dehydrogenation process, with dehydrogenation kinetics better than the parenting phases. The composite and its dehydrogenation products were characterized by the combined XRD, Fourier transformation infrared (FTIR) spectroscopy, and solid-state 11B MAS NMR techniques. Selective deuterium labeling was performed to elucidate a reaction sequence for the hydrogen release by analyzing the released gases.  相似文献   

4.
Hydrogen release from hydrolysis of LiNH2BH3, NaNH2BH3, LiH–NH3BH3 and NaH–NH3BH3 respectively was investigated in this paper. It is shown experimentally that LiNH2BH3 and NaNH2BH3 hydrolysis can release 3 equiv. of hydrogen at 25 °C. Hydrolysis of LiNH2BH3 or NaNH2BH3 exhibits greatly improved kinetics in comparison with neat NH3BH3 hydrolysis. The electronic and structural changes from NH3BH3 to [NH2BH3] play a crucial role in the improvements. The mechanism of LiNH2BH3 and NaNH2BH3 hydrolysis is the combination of H+ and OH ions of water with the polar ions of LiNH2BH3 and NaNH2BH3. The process of LiH–NH3BH3 and NaH–NH3BH3 hydrolysis comprises two steps: LiH or NaH first reacts with water and then the generated heat initiates thermohydrolysis of NH3BH3. LiH or NaH hydrolysis is prior to the reaction of LiH or NaH with NH3BH3. Our results show a novel strategy to promote hydrogen release kinetics of LiNH2BH3 and NaNH2BH3. Furthermore, our results also present a novel noncatalytic method for hydrogen release from NH3BH3 by co-hydrolyzing it with other highly exothermic hydrides.  相似文献   

5.
Ammonia borane (AB, NH3BH3) is nontoxic easily transportable solid hydride with high stability in air. In this work we demonstrate that simple mixing of AB with TiO2 (anatase) allows for hydrogen gas to be generated at temperatures as low as 80 °C. No losses of hydrogen have been observed during preparation of hydride-containing composites. It was shown that the adsorption of water vapor on TiO2 and the increase of TiO2 loading considerably accelerated the rate of AB decomposition. The experimentally observed formation of B–O chemical bonds and the elevated heat emission suggest strong interaction of AB with the adsorbed water species on TiO2 surface. It has been found that this interaction proceeds at a higher rate comparing with binary AB/H2O systems. The heat being released in the process is thought to contribute to overcoming the activation barrier in the dehydrogenation of ammonia borane to produce hydrogen gas.  相似文献   

6.
In order to reduce the use of fossil energies, the development of new technologies, such as those concerning fuel cells, is required. However, fuel cells currently involve issues of storing and generating hydrogen. Borohydride materials, like ammonia borane (NH3BH3), seem to present an interesting solution to these problems. In fact, NH3BH3 contains 19.6 wt.% of hydrogen, of which a high percentage can easily be released by moderate heating. Understanding and controlling the behaviour of ammonia borane would allow the development of a safe, lightweight and compact hydrogen storage system. The final purpose would consist in having a device that is able to be integrated in nomad applications such as GSM, PDA; or in thermal accumulators. The present study reports on thermal decompositions of ammonia borane doped with various percentages of NH4NO3. Differential scanning calorimetry (DSC) permitted an understanding of the thermal behaviour of the material, and the detection of released hydrogen was examined by evolved gas analysis on a thermo-gravimetric analyser (TGA) coupled to a mass spectrometer (MS). Finally, in order to avoid fuel cell malfunctioning due to pollutant gases, an identification of the decomposition products was carried out.  相似文献   

7.
Ammonia borane (AB) is one of the most attractive hydrides owing to its high hydrogen density (19.5 wt%). Stored hydrogen can be released by thermolysis or catalyzed hydrolysis, both routes having advantages and issues. The present study has envisaged for the first time the combination of thermolysis and hydrolysis, AB being first thermolyzed and then the solid by-product believed to be polyaminoborane [NH2BH2]n (PAB) being hydrolyzed. Herein we report that: (i) the combination is feasible, (ii) PAB hydrolyzes in the presence of a metal catalyst (Ru) at 40 °C, (iii) a total of 3 equiv. H2 is released from AB and PAB-H2O, (iv) high hydrogen generation rates can be obtained through hydrolysis, and (v) the by-products stemming from the PAB hydrolysis are ammonium borates. The following reactions may be proposed: AB → PAB + H2 and PAB + xH2O → 2H2 + ammonium borates. All of these aspects as well as the advantages and issues of the combination of AB thermolysis and PAB hydrolysis are discussed.  相似文献   

8.
Nano-sized platinum and ruthenium dispersed on the surface LiCoO2 as catalysts for borohydride hydrolysis are prepared by microwave-assisted polyol process. The catalysts are characterized by transmission electron microscopy (TEM), X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS). Very uniform Pt and Ru nanoparticles with sizes of <10 nm are dispersed on the surface of LiCoO2. XRD patterns show that the Pt/LiCoO2 and Ru/LiCoO2 catalysts only display the characteristic diffraction peaks of a LiCoO2 crystal structure. Results obtained from XPS analysis reveal that the Pt/LiCoO2 and Ru/LiCoO2 catalysts contain mostly Pt(0) and Ru(0), with traces of Pt(IV) and Ru(IV), respectively. The hydrogen generation rates using low noble metal loading catalysts, 1 wt.% Pt/LiCoO2 and 1 wt.% Ru/LiCoO2, are very high. The hydrogen generation rate using Ru/LiCoO2 as a catalyst is slightly higher compared with that of Pt/LiCoO2.  相似文献   

9.
A fuel cell (FC) using liquid fuel and oxidizer is under investigation. H2O2 is used in this FC directly at the cathode. Either of two types of reactant, namely a gas-phase hydrogen or an aqueous NaBH4 solution, are utilized as fuel at the anode. Experiments demonstrate that the direct utilization of H2O2 and NaBH4 at the electrodes results in >30% higher voltage output compared to the ordinary H2/O2 FC. Further, the use of this combination of all liquid fuels, provides numerous advantages (ease of storage, reduced pumping requirements, simplified heat removal, etc.) from an operational point of view. This design is inherently compact compared to other cells that use gas phase reactants. Further, regeneration is possible using an electrical input, e.g. from power lines or a solar panel. While the peroxide-based FC is ideally suited for applications such as space power where air is not available and a high energy density fuel is essential, other distributed and mobile power uses are of interest.  相似文献   

10.
The hydrogen economy is a proposed system that utilizes hydrogen to deliver energy. For the realization of this concept, how to safely, controllably and reversibly store and release hydrogen are critical problems which must be resolved. Metal alloys combined with suitable support materials are widely applied to various catalytic reactions. Here palladium nickel bimetallic nanoparticles doped with cerium oxide on a reduced graphene oxide (rGO) support were prepared by combining metal ion precursors and graphene oxide in a one-pot co-reduction approach. The as-received catalysts were characterized by XRD, TEM, SEM, XPS and ICP-OES, and the results revealed that PdNi-CeO2 nanoparticles were uniform dispersal on rGO. The as-synthesized PdNi-CeO2/rGO had been adopted as a heterogeneous catalyst for the hydrogen evolution from the hydrolysis of ammonia borane (NH3BH3, AB) at room temperature. Kinetically, the hydrogen-release rate was first-order with the increased concentration of catalysts. The optimized catalyst of Pd0.8Ni0.2-CeO2/rGO with the CeO2 content of 13.9 mol% exhibited an excellent activity with a turnover frequency value of 30.5 mol H2 (mol catalyst)?1 min?1 at 298 K, and a low apparent activation energy (Ea) of 37.78 kJ mol?1. The robust catalytic performance of the Pd0.8Ni0.2-CeO2/rGO is attributed to the uniform controlled nanoparticle size, the synergic effect between the nanoparticles bimetallic properties, and the effective charge transfer interactions between the metal and support.  相似文献   

11.
Being a boron-based compound, sodium borohydride, NaBH4, is a convenient hydrogen storage material for applications like unmanned air vehicles. There are several concerns behind commercialization of hydrogen gas generator by NaBH4 hydrolysis systems. This study aims to contribute to the solution of the problems of NaBH4 hydrolysis system in three main ways. First, the usage of solid state NaBH4 enables to increase the durability and the gravimetric H2 storage capacity of the system in order to meet US DOE targets. Second, solid NaBH4 usage decreases the system's weight since it does not require a separate fuel storage tank, which is very important for portable, on demand applications. Finally, the system's cost is decreased by using an accessible and effective non-precious catalyst such as ferric chloride, FeCl3. The maximum hydrogen generation rate obtained was 2.6 L/min and the yield was 2 L H2/g NaBH4 with an efficiency of 76% at its most promising condition. Moreover, the novel solid NaBH4 hydrogen gas generator developed in the present work was integrated into a proton exchange membrane fuel cell and tested at the optimum operating conditions.  相似文献   

12.
Successful synthesis of LiBH4·NH3 confined in nanoporous silicon dioxide (LiBH4·NH3@SiO2) was achieved via a new “ammonia-deliquescence” method, which avoids the involvement of any solvents during the process of synthesis. Compared to the pure LiBH4·NH3, the confined LiBH4·NH3@SiO2 exhibited significantly improved dehydrogenation properties, which not only suppressed the emission of NH3, but also decreased the onset dehydrogenation temperature to 60 °C, thus leading to an enhanced conversion of NH3 to H2. In the temperature range of 60–300 °C, the mole ratio of H2 release for the confined LiBH4·NH3@SiO2 is 85 mol % of the total gas evolved, compared to 2.66 mol % for the pristine LiBH4·NH3. Isothermal dehydrogenation results showed that the LiBH4·NH3@SiO2 is able to release about 1.26, 2.09, and 2.35 equiv. of hydrogen, at 150 °C, 200 °C, and 250 °C, respectively. From analysis of the Fourier transform infrared, Raman, and nuclear magnetic resonance spectra of the confined LiBH4·NH3@SiO2 sample heated to various temperatures, as well as its dehydrogenation product under NH3 atmosphere, it is proposed that the improved dehydrogenation of LiBH4·NH3@SiO2 is mainly attributable to two crucial factors resulting from the nanoconfinement: (1) stabilization of the NH3 in the nanopores of SiO2, and (2) enhanced combination of LiBH4 and NH3 groups, leading to fast dehydrogenation at low temperature.  相似文献   

13.
Two new cobalt-based ammine borohydrides were prepared via ball milling of LiBH4 and CoCln·3NH3 (n = 3, 2) with molar ratios of 3:1 and 2:1, respectively. X-ray diffraction (XRD) results revealed the as-prepared composites having amorphous state. Thermogravimetric analysis-mass spectrometry (TG-MS) measurements showed that the two composites mainly release H2, concurrent with the evolution of a small amount of NH3. Further results showed that the excessive addition of LiBH4 can suppress the liberation of NH3, resulting in the release of H2 with a high purity (>99 mol.%). By combination with the temperature-programmed-desorption (TPD) results, the CoCl3·3NH3/4LiBH4 and CoCl2·3NH3/3LiBH4composites can release 7.3 wt.% (4.2 wt.% including LiCl) and 4.2 wt.% (2.0 wt.% including LiCl) pure hydrogen, respectively, in the temperature range of 25–300 °C. Isothermal dehydrogenation results reveal that CoCl3·3NH3/3LiBH4 shows favorable dehydrogenation rate at low temperatures, releasing about 5.2 wt.% (2.9 wt.% including LiCl) of hydrogen within 45 min at 80 °C.  相似文献   

14.
In the pursuit of the development of alternative mobile power sources with high energy densities, this study elucidated a new hydrogen generation approach from solid NaBH4 using a new catalyst, sodium hydrogen carbonate (NaHCO3), which was placed in a small and compact cartridge. A planar air-breathing PEMFC system fitted with the cartridge has been investigated for testing hydrogen generation from NaBH4 and NaHCO3. NaHCO3 allowed the hydrogen cartridge to control hydrogen generation and to improve the power density, fuel efficiency, energy efficiency, and cell response. The cell performance of solid NaBH4 air-breathing PEMFC system strongly depended on the operating conditions: the feeding rates and concentrations of catalytic solutions for NaBH4 hydrolysis. In various concentrations (5 - 12 wt %) of NaHCO3 aqueous solutions, 10 wt % NaHCO3 aqueous solution exhibited the highest maximum power density of 128 mW cm−2 at 0.7 V, which was estimated to be a Faradic efficiency of 78.4% and an energy efficiency of 46.3%. The data illustrated that NaHCO3 was an effective catalyst for hydrogen generation with the solid NaBH4, which is considered as a hydrogen carrier for air-breathing micro PEMFCs operated without auxiliary hydrogen controller or devices.  相似文献   

15.
Nickel-based bimetallic catalysts were screened using the sodium borohydride NaBH4 hydrolysis and the aqueous hydrazine borane N2H4BH3 dehydrogenation. A total of 22 bimetallic catalysts were synthesized according to an easy process while focusing on metals like Fe, Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt and Au. In the end, the bimetallic candidate Ni87.5Pt12.5 showed to be the most active and the most selective for the dehydrogenation of N2H4BH3. At 70?°C, it is able to decompose N2H4BH3 into 5.8 equivalents of H2+N2 in less than 12?min such as: N2H4BH3?+?3H2O?→?0.95 N2?+?0.1 NH3?+?B(OH)3?+?4.85H2. Durability and stability tests were also performed. In our conditions, Ni87.5Pt12.5 was found to suffer from small loss of performance because of an electronic evolution of the catalytic surface leading to modified sorption properties of the catalytic sites. Our main results are reported and discussed herein.  相似文献   

16.
17.
In this study, catalytic hydrolysis of aqueous solutions of NaBH4 under isothermal and adiabatic conditions was investigated. A finely dispersed cobalt powder based on titanium oxide was used as a model catalyst. It was determined that catalytic activity of this catalyst practically did not change after 20 cycles. It was shown that the activation energy, determined by the rate of hydrogen generation, depends on NaBH4 concentrations. We believe that this effect is associated with sorption/desorption processes. If to conduct hydrolysis under conditions close to adiabatic, the time of hydrolysis is significantly reduced. As united solution of equations of kinetics and energy conversation shows, the data of experiments in a thermally insulated reactor can be reasonably predicted.  相似文献   

18.
The hydrolysis of sodium-borohydride (SBH) to produce hydrogen has been studied at various temperatures using salts of nickel (II) or iron (III) as catalyst. Excess of water has been added to a mixture of solid SBH and catalyst to start hydrolysis reaction and the evolved hydrogen measured as a function of time. After a sudden peak a constant hydrogen flow was observed when Ni is used as catalyst. The activation energy has been evaluated from the dependence of the reaction time and of the hydrogen flow on the inverse of temperature. If Ni is substituted by a Fe based catalyst, after the initial increase, a different shape is observed in the hydrogen flow: it reaches a maximum and then monotonously decrease to zero. The different shape has been related to the different activity of the catalyst. The reaction activation energy was evaluated to be 73 KJ/mol.  相似文献   

19.
A fully-integrated micro PEM fuel cell system with a NaBH4 hydrogen generator was developed. The micro fuel cell system contained a micro PEM fuel cell and a NaBH4 hydrogen generator. The hydrogen generator comprised a NaBH4 reacting chamber and a hydrogen separating chamber. Photosensitive glass wafers were used to fabricate a lightweight and corrosion-resistant micro fuel cell and hydrogen generator. All of the BOP such as a NaBH4 cartridge, a micropump, and an auxiliary battery were fully integrated. In order to generate stable power output, a hybrid power management operating with a micro fuel cell and battery was designed. The integrated performance of the micro PEM fuel cell with NaBH4 hydrogen generator was evaluated under various operating conditions. The hybrid power output was stably provided by the micro PEM fuel cell and auxiliary battery. The maximum power output and specific energy density of the micro PEM fuel cell system were 250 mW and 111.2 W h/kg, respectively.  相似文献   

20.
Carbon aerogels (CAs) with oxygen-rich functional groups and high surface area are synthesized by hydrothermal treatment of glucose in the presence of boric acid, and are used as the support for loading cobalt catalysts (CAs/Co). Cobalt nanoparticles distribute uniformly on the surface of ACs, creating highly dispersed catalytic active sites for hydrolysis of alkaline sodium borohydride solution. A rapid hydrogen generation rate of 11.22 L min−1 g(cobalt)−1 is achieved at 25 °C by hydrolysis of 1 wt% NaBH4 solution containing 10 wt% NaOH and 20 mg the CAs/Co catalyst with a cobalt loading of 18.71 wt%. Furthermore, various influences are systematically investigated to reveal the hydrolysis kinetics characteristics. The activation energy is found to be 38.4 kJ mol−1. Furthermore, the CAs/Co catalyst can be reusable and its activity almost remains unchanged after recycling, indicating its promising applications in fuel cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号