首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To better understand the relationship between structure and molecular dynamics in F-actin, we have monitored the torsional flexibility of actin filaments as a function of the type of tightly bound divalent cation (Ca2+ or Mg2+) or nucleotide (ATP or ADP), the level of inorganic phosphate and analogues, KCl concentration, and the level of phalloidin. Torsional flexibility on the microsecond time scale was monitored by measuring the steady-state phosphorescence emission anisotropy (rFA) of the triplet probe erythrosin-5-iodoacetamide covalently bound to Cys-374 of skeletal muscle actin; extrapolations to an infinite actin concentration corrected the measured anisotropy values for the influence of variable amounts of rotationally mobile G-actin in solution. The type of tightly bound divalent cation modulated the torsional flexibility of F-actin polymerized in the presence of ATP; filaments with Mg2+ bound (rFA = 0.066) at the active site cleft were more flexible than those with Ca2+ bound (rFA = 0.083). Filaments prepared from G-actin in the presence of MgADP were more flexible (rFA = 0.051) than those polymerized with MgATP; the addition of exogenous inorganic phosphate or beryllium trifluoride to ADP filaments, however, decreased the filament flexibility (increased the anisotropy) to that seen in the presence of MgATP. While variations in KCl concentration from 0 to 150 mM did not modulate the torsional flexibility of the filament, the binding of phalloidin decreased the torsional flexibility of all filaments regardless of the type of cation or nucleotide bound at the active site. These results emphasize the dynamic malleability of the actin filament, the role of the cation-nucleotide complex in modulating the torsional flexibility, and suggest that the structural differences that have previously been seen in electron micrographs of actin filaments manifest themselves as differences in torsional flexibility of the filament.  相似文献   

2.
Cdc42, activated with GTPgammaS, induces actin polymerization in supernatants of lysed neutrophils. This polymerization, like that induced by agonists, requires elongation at filament barbed ends. To determine if creation of free barbed ends was sufficient to induce actin polymerization, free barbed ends in the form of spectrin-actin seeds or sheared F-actin filaments were added to cell supernatants. Neither induced polymerization. Furthermore, the presence of spectrin-actin seeds did not increase the rate of Cdc42-induced polymerization, suggesting that the presence of Cdc42 did not facilitate polymerization from spectrin-actin seeds such as might have been the case if Cdc42 inhibited capping or released G-actin from a sequestered pool. Electron microscopy revealed that Cdc42-induced filaments elongated rapidly, achieving a mean length greater than 1 micron in 15 s. The mean length of filaments formed from spectrin-actin seeds was <0.4 micron. Had spectrin-actin seeds elongated at comparable rates before they were capped, they would have induced longer filaments. There was little change in mean length of Cdc42-induced filaments between 15 s and 5 min, suggesting that the increase in F-actin over this time was due to an increase in filament number. These data suggest that Cdc42 induction of actin polymerization requires both creation of free barbed ends and facilitated elongation at these ends.  相似文献   

3.
Regulation of the F-actin severing activity of gelsolin by Ca2+ has been investigated under physiologic ionic conditions. Tryptophan fluorescence intensity measurements indicate that gelsolin contains at least two Ca2+ binding sites with affinities of 2.5 x 10(7) M-1 and 1.5 x 10(5) M-1. At F-actin and gelsolin concentrations in the range of those found intracellularly, gelsolin is able to bind F-actin with half-maximum binding at 0.14 microM free Ca2+ concentration. Steady-state measurements of gelsolin-induced actin depolymerization suggest that half-maximum depolymerization occurs at approximately 0.4 microM free Ca2+ concentration. Dynamic light scattering measurements of the translational diffusion coefficient for actin filaments and nucleated polymerization assays for number concentration of actin filaments both indicate that severing of F-actin occurs slowly at micromolar free Ca2+ concentrations. The data suggest that binding of Ca2+ to the gelsolin-F-actin complex is the rate-limiting step for F-actin severing by gelsolin; this Ca2+ binding event is a committed step that results in a Ca2+ ion bound at a high-affinity, EGTA-resistant site. The very high affinity of gelsolin for the barbed end of an actin filament drives the binding reaction equilibrium toward completion under conditions where the reaction rate is slow.  相似文献   

4.
Profilin, a ubiquitous 12 to 15-kDa protein, serves many functions, including sequestering monomeric actin, accelerating nucleotide exchange on actin monomers, decreasing the critical concentration of the barbed end of actin filaments, and promoting actin polymerization when barbed ends are free. Most previous studies have focused on profilin itself rather than its complex with actin. A high-affinity profilin-actin complex (here called profilactin) can be isolated from a poly-(L)-proline (PLP) column by sequential elution with 3 M and 7 M urea. Profilactin inhibited the elongation rate of pyrenyl-G-actin from filament seeds in a concentration- and time-dependent manner. Much greater inhibition of elongation was observed with spectrin-F-actin than gelsolin-F-actin seeds, suggesting that the major effect of profilactin was due to capping the barbed ends of actin filaments. Its dissociation constant for binding to filament ends was 0.3 microM; the on- and off-rate constants were estimated to be 1.7 x 10(3) M-1 s-1 and 4.5 x 10(-4) s-1, respectively. Purified profilin (obtained by repetitive applications to a PLP column and assessed by silver-stained polyacylamide gels) did not slow the elongation rate of pyrenyl-G-actin from filament seeds. Capping protein could not be detected by Western blotting in the profilactin preparation, but low concentrations of gelsolin did contaminate our preparation. However, prolonged incubation with either calcium or EGTA did not affect capping activity, implying that contaminating gelsolin-actin complexes were not primarily responsible for the observed capping activity. Reapplication of the profilactin preparation to PLP-coupled Sepharose removed both profilin and actin and concurrently eliminated its capping activity. Profilactin that was reapplied to uncoupled Sepharose retained its capping activity. Phosphatidylinositol-4,5-bisphosphate (PIP2) was the most potent phosphoinositol in reducing the capping activity of profilactin. Dissociation of the tight profilactin complex may serve as a unique mechanism by which profilin helps regulate actin filament growth.  相似文献   

5.
Three methods, fluorescence anisotropy of rhodamine-labeled profilin, intrinsic fluorescence and nucleotide exchange, give the same affinity, Kd = 0.1 microM, for Acanthamoeba profilins binding amoeba actin monomers with bound Mg-ATP. Replacement of serine 38 with cysteine created a unique site where labeling with rhodamine did not alter the affinity of profilin for actin. The affinity for rabbit skeletal muscle actin is about 4-fold lower. The affinity for both actins is 5-8-fold lower with ADP bound to actin rather than ATP. Pyrenyliodoacetamide labeling of cysteine 374 of muscle actin reduces the affinity for profilin 10-fold. The affinity of profilin for nucleotide-free actin is approximately 3-fold higher than for Mg-ATP-actin and approximately 24-fold higher than for Mg-ADP-actin. As a result, profilin binding reduces the affinity of actin 3-fold for Mg-ATP and 24-fold for Mg-ADP. Mg-ATP dissociates 8 times faster from actin-profilin than from actin and binds actin-profilin 3 times faster than actin. Mg-ADP dissociates 14 times faster from actin-profilin than from actin and binds actin-profilin half as fast as actin. Thus, profilin promotes the exchange of ADP for ATP. These properties allow profilin to bind a high proportion of unpolymerized ATP-actin in the cell, suppressing spontaneous nucleation but allowing free barbed ends to elongate at more than 500 subunits/second.  相似文献   

6.
The contribution of electrostatic interactions to the effects of chicken gizzard calponin on the kinetics of actin polymerization and the bundling of F-actin were characterized by a combination of fluorescence, light-scattering, co-sedimentation, and electron-microscopic methods. Stoichiometric amounts of calponin accelerate actin polymerization in low-ionic-strength solutions, but this effect is diminished at [KCI] = 150 mM. At low ionic strengths, micromolar concentrations of calponin induce the formation of large bundles of actin filaments, and lower concentrations of calponin quench the fluorescence of pyrene-labeled F-actin. The latter effect is related to binding of calponin to F-actin rather than to bundling of the filaments. The concentration of calponin required to bundle a fixed concentration of actin filaments increases with increasing ionic strength, as the average diameter of the bundles decreases. Millimolar concentrations of ATP, GTP or ITP are equally efficient at dispersing actin bundles to single filaments or smaller aggregates, even though a significant fraction of calponin remains bound to F-actin. Our findings show that the binding of calponin to actin is determined at least in part by electrostatic interactions, and that the polycationic nature of calponin is primarily responsible for the formation of F-actin bundles via its ability to reduce the electrostatic repulsion between the negatively charged actin filaments.  相似文献   

7.
Small GTP-binding proteins of the Rho family appear to integrate extracellular signals from diverse receptor types and initiate rearrangements of F-actin. Active members of the Rho family, Rho and Rac, are now joined by Cdc42 which induces filopodia. Downstream of the Rho family proteins, actin polymerization may be induced by an increase in the availability of actin filament barbed ends. Actin organization may be affected by exposure of actin-binding sites on proteins such as vinculin and ezrin.  相似文献   

8.
The Caenorhabditis elegans unc-60 gene encodes two actin depolymerizing factor/cofilin proteins which are implicated in the regulation of actin filament assembly in body wall muscle. We examined the interaction of recombinant UNC-60A and B proteins with actin and found that they differentially regulate actin filament dynamics. Co-pelleting assays with F-actin showed that UNC-60A depolymerized but did not remain bound to F-actin, whereas UNC-60B bound to but did not depolymerize F-actin. In the pH range of 6.8-8.0, the apparent activities of UNC-60A and B did not change although UNC-60A showed greater actin-depolymerizing activity at higher pH. These activities were further confirmed by a light scattering assay and electron microscopy. The effects of these proteins on actin polymerization were quite different. UNC-60A inhibited polymerization in a concentration-dependent manner. On the other hand, UNC-60B strongly inhibited the nucleation process but accelerated the following elongation step. However, an excess amount of UNC-60B increased the amount of unpolymerized actin. These results indicate that UNC-60A depolymerizes actin filaments and inhibits actin polymerization, whereas UNC-60B strongly binds to F-actin without depolymerizing it and, through binding to G-actin, changes the rate of actin polymerization depending on the UNC-60B:actin ratio. These data suggest that the two UNC-60 isoforms play differential roles in regulating actin filament dynamics in vivo.  相似文献   

9.
The thermodynamics and kinetics of actin interaction with Arabidopsis thaliana actin-depolymerizing factor (ADF)1, human ADF, and S6D mutant ADF1 protein mimicking phosphorylated (inactive) ADF are examined comparatively. ADFs interact with ADP.G-actin in rapid equilibrium (k+ = 155 microM-1.s-1 and k- = 16 s-1 at 4 degreesC under physiological ionic conditions). The kinetics of interaction of plant and human ADFs with F-actin are slower and exhibit kinetic cooperativity, consistent with a scheme in which the initial binding of ADF to two adjacent subunits of the filament nucleates a structural change that propagates along the filament, allowing faster binding of ADF in a "zipper" mode. ADF binds in a non-cooperative faster process to gelsolin-capped filaments or to subtilisin-cleaved F-actin, which are structurally different from standard filaments (Orlova, A., Prochniewicz, E., and Egelman, E. H. (1995) J. Mol. Biol. 245, 598-607). In contrast, the binding of phalloidin to F-actin cooperatively inhibits its interaction with ADF. The ADF-facilitated nucleation of ADP.actin self-assembly indicates that ADF stabilizes lateral interactions in the filament. Plant and human ADFs cause only partial depolymerization of F-actin at pH 8, consistent with identical functions in enhancing F-actin dynamics. Phosphorylation does not affect ADF activity per se, but decreases its affinity for actin by 20-fold.  相似文献   

10.
The interaction of myosin with actin, coupled with hydrolysis of ATP, is the molecular basis of muscle contraction. The head segment of myosin, called S1, contains the distinct binding sites for ATP and actin and is responsible for the ATPase activity. The myosin-catalyzed ATP hydrolysis consists of several intermediate steps and each step is accompanied by conformational changes in the S1 segment. The rate-limiting step of the ATP hydrolysis is the dissociation of the S1 x ADP x Pi complex which is accelerated by actin. The substitution of Pi with phosphate analogs (PA), such as vanadate, beryllium fluoride (BeFx) or aluminum fluoride (AlF4-), yields stable complexes which mimic the intermediates of the ATP hydrolysis. In this work, tertiary structure changes in S1 in the vicinity of aromatic residues was studied by comparing near-UV circular dichroism (CD) spectra from S1-nucleotide-phosphate analog complexes in the presence of Mg2+ and other cations. A significant difference between the MgATP and MgADP spectra indicated notable tertiary structural changes accompanying the M**ADP x Pi --> M*ADP transition. The spectra of the S1 x MgADP x BeFx and S1 x MgADP x AlF4- complexes resemble to those obtained upon addition of MgATPgammaS and MgATP to S1, and correspond to the M* x ATP and M** x ADP x Pi intermediates, respectively. We have found recently that the presence of divalent metal cations (Me2+) is essential for the formation of stable S1 x MeADP x PA complexes. Moreover, the nature of the metal cations strongly influences the stability of these complexes [Peyser, Y. M., et al. (1996) Biochemistry 35, 4409-4416]. In the present work we studied the effect of Mg2+, Mn2+, Ca2+, Ni2+, Co2+, and Fe2+ on the near-UV CD spectrum of the ATP, ADP, ADP x BeFx, and ADP x AlF4- containing S complexes. The CD spectra obtained with ADP, ATP ADP x BeFx and ADP x AlF4- were essentially identical in the presence of Co2+ and rather similar in the case of Ca2+, while they were partially different in other cases. An interesting correlation was found between actin activation and ATP versus ADP difference spectra in the presence of various metal ions. The distribution of the fractional concentration of the intermediates of ATP hydrolysis was estimated in the presence of each cation from the CD spectra with phosphate analogs. In the presence of Mg2+ the predominant intermediate is the M** x ADP x Pi state, which is in accordance with the kinetic studies. On the other hand with non-native cations the predominant intermediate is the M* x ADP state and the release of ADP is the rate limiting step in the myosin-catalyzed ATP hydrolysis. According to the results, the near-UV CD spectrum originating from aromatic residues in S1 not only can distinguish identifiable states in the ATP hydrolysis cycle but can also pinpoint to changes in the tertiary structure caused by complex formation with nucleotide or nucleotide analog and various divalent metal cations. These findings, that are correlative with actin activation, and thus with the power stroke, suggest new strategies for perturbing S1 structure in the continuous efforts directed toward the elucidation of the mechanism of muscle contraction.  相似文献   

11.
Adducin is a protein associated with spectrin and actin in membrane skeletons of erythrocytes and possibly other cells. Adducin has activities in in vitro assays of association with the sides of actin filaments, capping the fast growing ends of actin filaments, and recruiting spectrin to actin filaments. This study presents evidence that adducin exhibits a preference for the fast growing ends of actin filaments for recruiting spectrin to actin and for direct association with actin. beta-Adducin-(335-726) promoted recruitment of spectrin to gelsolin-sensitive sites at fast growing ends of actin filaments with half-maximal activity at 15 nM and to gelsolin-insensitive sites with half-maximal activity at 75 nM. beta-Adducin-(335-726) also exhibited a preference for actin filament ends in direct binding assays; the half-maximal concentration for binding of adducin to gelsolin-sensitive sites at filament ends was 60 nM, and the Kd for binding to lateral sites was 1.5 microM. The concentration of beta-adducin-(335-726) of 60 nM required for half-maximal binding to filament ends is in the same range as the concentration of 150 nM required for half-maximal actin capping activity. All interactions of adducin with actin require the myristoylated alanine-rich protein kinase C substrate-related domain as well as a newly defined oligomerization site localized in the neck domain of adducin. Surprisingly, the head domain of adducin is not required for spectrin-actin interactions, although it could play a role in forming tetramers. The relative activities of adducin imply that an important role of adducin in cells is to form a complex with the fast growing ends of actin filaments that recruits spectrin and prevents addition or loss of actin subunits.  相似文献   

12.
Alterations in vascular cell shape and motility occur during developmental processes and in response to injury. Similarly, during tumor vascularization and atherogenesis, endothelial and smooth muscle cells undergo motile and proliferative responses to extracellular cues. Recent inroads into our understanding of signal transduction have identified several candidate pathways by which the extracellular matrix- and growth factor-mediated stimulation of vascular cell motility may be mediated. The multiple and divergent extracellular stimuli that stimulate vascular motile responses may converge on the cytoskeleton via a family of ras-related GTPases. Biochemical analyses as well as examination of cytoskeletal dynamics in vivo indicate that actin polymerization at the forward aspects of spreading cytoplasm is capable of driving forward protrusion formation in the absence of a conventional actin motor. Actin polymerization at the plasma membrane of leading lamellae may be mediated both by de novo nucleation of actin filaments and the generation of free filament ends by uncapping the barbed ends of existing actin filaments. This review summarizes the most recent findings in extracellular-cytoskeletal-signal transduction, therein, providing a framework to explain the remarkable remodeling seen in the vasculature during developmental and disease-related processes.  相似文献   

13.
We have labeled rabbit skeletal muscle actin with the triplet probe erythrosin-5-iodoacetamide and characterized the labeled protein. Labeling decreased the critical concentration and lowered the intrinsic viscosity of F-actin filaments; labeled filaments were motile in an in vitro motility assay but were less effective than unlabeled F-actin in activating myosin S1 ATPase activity. In unpolymerized globular actin (G-actin), both the prompt and delayed luminescence were red-shifted from the spectra of the free dye in solution and the fluorescence anisotropy of the label was high (0.356); filament formation red shifted all excitation and emission spectra and increased the fluorescence anisotropy to 0.370. The erythrosin phosphorescence decay was at least biexponential in G-actin with an average lifetime of 99 microseconds while in F-actin the decay was approximately monoexponential with a lifetime of 278 microseconds. These results suggest that the erythrosin dye was bound at the interface between two actin monomers along the two-start helix. The steady-state phosphorescence anisotropy of F-actin was 0.087 at 20 degrees C and the anisotropy increased to approximately 0.16 in immobilized filaments. The phosphorescence anisotropy was also sensitive to binding the physiological ligands phalloidin, cytochalasin B and tropomyosin. This study lays a firm foundation for the use of this triplet probe to study the large-scale molecular dynamics of F-actin.  相似文献   

14.
Adducin is a membrane skeleton protein originally described in human erythrocytes that promotes the binding of spectrin to actin and also binds directly to actin and bundles actin filaments. Adducin is associated with regions of cell-cell contact in nonerythroid cells, where it is believed to play a role in regulating the assembly of the spectrin-actin membrane skeleton. In this study we demonstrate a novel function for adducin; it completely blocks elongation and depolymerization at the barbed (fast growing) ends of actin filaments, thus functioning as a barbed end capping protein (Kcap approximately 100 nM). This barbed end capping activity requires the intact adducin molecule and is not provided by the NH2-terminal globular head domains alone nor by the COOH-terminal extended tail domains, which were previously shown to contain the spectrin-actin binding, calmodulin binding, and phosphorylation sites. A novel difference between adducin and other previously described capping proteins is that it is down-regulated by calmodulin in the presence of calcium. The association of stoichiometric amounts of adducin with the short erythrocyte actin filaments in the membrane skeleton indicates that adducin could be the functional barbed end capper in erythrocytes and play a role in restricting actin filament length. Our experiments also suggest novel possibilities for calcium regulation of actin filament assembly by adducin in erythrocytes and at cell-cell contact sites in nonerythroid cells.  相似文献   

15.
Microtubule dynamics are believed to be controlled by a stabilizing cap of tubulin dimers at microtubule ends that contain either GTP or GDP and Pi in the exchangeable nucleotide site (E-site) of the beta-subunit. However, it has been difficult to obtain convincing evidence to support this hypothesis because the quantity of GTP and Pi in the E-site of assembled brain tubulin (the tubulin used in most studies thus far) is extremely low. In this study, we have measured the amount of GTP and Pi in the E-site of wild-type and mutated yeast assembled tubulins. In contrast to brain microtubules, 6% of the tubulin in a wild-type yeast microtubule contains a combination of E-site GTP and Pi. This result indicates that GTP hydrolysis and Pi release are not coupled to dimer addition to the end of the microtubule and supports the hypothesis that microtubules contain a cap of tubulin dimers with GTP or Pi in their E-sites. In addition, we have measured the E-site content of GTP and Pi in microtubules assembled from two yeast tubulins that had been mutated at residues T107 and T143 in beta-tubulin, sites thought to interact with the nucleotide bound in the E-site. Previous studies have shown that microtubules containing these mutated tubulins have modified dynamic behavior in vitro. The results from these experiments indicate that the GTP or GDP-Pi cap model does not adequately explain yeast microtubule dynamic behavior.  相似文献   

16.
The Arp2/3 complex was first purified from Acanthamoeba castellanii by profilin affinity chromatography. The mechanism of interaction with profilin was unknown but was hypothesized to be mediated by either Arp2 or Arp3. Here we show that the Arp2 subunit of the complex can be chemically cross-linked to the actin-binding site of profilin. By analytical ultracentrifugation, rhodamine-labeled profilin binds Arp2/3 complex with a Kd of 7 microM, an affinity intermediate between the low affinity of profilin for barbed ends of actin filaments and its high affinity for actin monomers. These data suggest the barbed end of Arp2 is exposed, but Arp2 and Arp3 are not packed together in the complex exactly like two actin monomers in a filament. Arp2/3 complex also cross-links actin filaments into small bundles and isotropic networks, which are mechanically stiffer than solutions of actin filaments alone. Arp2/3 complex is concentrated at the leading edge of motile Acanthamoeba, and its localization is distinct from that of alpha-actinin, another filament cross-linking protein. Based on localization and actin filament nucleation and cross-linking activities, we propose a role for Arp2/3 in determining the structure of the actin filament network at the leading edge of motile cells.  相似文献   

17.
Stimulation of starved Dictyostelium amoebae with the chemoattractant cAMP produces a rapid increase in actin nucleation activity at 5 seconds which is cotemporal with an increase in actin assembly and a decrease in Ca(2+)-insensitive capping activity [1]. Further characterization of this capping activity, called aginactin, led to the isolation of an Hsc70 [2]. Here, we demonstrate that purified aginactin contains both Hsc70 and the heterodimeric barbed-end capping protein, cap32/34. Immunoprecipitation of cap32/34 from purified aginactin removes all capping activity while immunoprecipitation of Hsc70 does not, indicating that the capping activity of aginactin is an intrinsic property of cap32/34. Gel filtration and immunoprecipitation assays fail to demonstrate the existence of a stable, high affinity complex between Hsc70 and cap32/34 in either lysate supernatants or aginactin pools but indicate the presence of a transient, ATP-sensitive interaction in cell lysates. Reconstitution experiments with purified Hsc70 and cap32/34 demonstrate that Hsc70 neither stimulates nor inhibits the capping activity of native cap32/34. Furthermore, we measured a Kd of approx. 0.8 nM for the binding of cap32/34 to barbed ends of actin filaments in the absence or presence of Hsc70, in agreement with Kd values measured for purified capping protein from other sources. We conclude, therefore, that cap32/34 is responsible for the capping activity called aginactin and that Hsc70 is not a regulatory cofactor for cap32/34 in Dictyostelium but may function as a chaperone during assembly of the cap32/34 heterodimer.  相似文献   

18.
Elongation factor 1 alpha (EF1 alpha) is an abundant protein that binds aminoacyl-tRNA and ribosomes in a GTP-dependent manner. EF1 alpha also interacts with the cytoskeleton by binding and bundling actin filaments and microtubules. In this report, the effect of purified EF1 alpha on actin polymerization and depolymerization is examined. At molar ratios present in the cytosol, EF1 alpha significantly blocks both polymerization and depolymerization of actin filaments and increases the final extent of actin polymer, while at high molar ratios to actin, EF1 alpha nucleates actin polymerization. Although EF1 alpha binds actin monomer, this monomer-binding activity does not explain the effects of EF1 alpha on actin polymerization at physiological molar ratios. The mechanism for the inhibition of polymerization is related to the actin-bundling activity of EF1 alpha. Both ends of the actin filament are inhibited for polymerization and both bundling and the inhibition of actin polymerization are affected by pH within the same physiological range; at high pH both bundling and the inhibition of actin polymerization are reduced. Additionally, it is seen that the binding of aminoacyl-tRNA to EF1 alpha releases EF1 alpha's inhibiting effect on actin polymerization. These data demonstrate that EF1 alpha can alter the assembly of F-actin, a filamentous scaffold on which non-membrane-associated protein translation may be occurring in vivo.  相似文献   

19.
The Escherichia coli FOF1 ATP synthase uncoupling mutation, gammaM23K, was found to increase the energy of interaction between gamma and beta subunits, prevent the proper utilization of binding energy to drive catalysis, and block the enzyme in a Pi release mode. In this paper, the effects of this mutation on substrate binding in cooperative ATP synthesis are assessed. Activation of ATP synthesis by ADP and Pi was determined for the gammaM23K FOF1. The K0.5 for ADP was not affected, but K0.5 for Pi was approximately 7-fold higher even though the apparent Vmax was close to the wild-type level. Wild-type enzyme had a turnover number of 82 s-1 at pH 7.5 and 30 degrees C. During oxidative phosphorylation, the apparent dissociation constant (KI) for ATP was not affected and was 5-6 mM for both wild-type and gammaM23K enzymes. Thus, the apparent binding affinity for ATP in the presence of DeltamuH+ was lowered by 7 orders of magnitude from the affinity measured at the high-affinity catalytic site. Arrhenius analysis of ATP synthesis for the gammaM23K FOF1 revealed that, like those of ATP hydrolysis, the transition state DeltaH was much more positive and TDeltaS was much less negative, adding up to little change in DeltaG. These results suggested that ATP synthesis is inefficient because of an extra bond between gamma and beta subunits which must be broken to achieve the transition state. Analysis of the transition state structures using isokinetic plots demonstrate that ATP hydrolysis and synthesis utilize the same kinetic pathway. Incorporating this information into a model for rotational catalysis suggests that at saturating substrate concentrations, the rate-limiting step for hydrolysis and synthesis is the rotational power stroke where each of the beta subunits changes conformation and affinity for nucleotide.  相似文献   

20.
The actin-based motility of Listeria monocytogenes requires the addition of actin monomers to the barbed or plus ends of actin filaments. Immunofluorescence micrographs have demonstrated that gelsolin, a protein that both caps barbed ends and severs actin filaments, is concentrated directly behind motile bacteria at the junction between the actin filament rocket tail and the bacterium. In contrast, CapG, a protein that strictly caps actin filaments, fails to localize near intracellular Listeria. To explore the effect of increasing concentrations of gelsolin on bacterial motility, NIH 3T3 fibroblasts stably transfected with gelsolin cDNA were infected with Listeria. The C5 cell line containing 2.25 times control levels of gelsolin supported significantly higher velocities of bacterial movement than did control fibroblasts (mean +/- standard error of the mean, 0.09 +/- 0.003 micro(m)/s [n = 176] versus 0.05 +/- 0.003 micro(m)/s [n = 65]). The rate of disassembly of the Listeria-induced actin filament rocket tail was found to be independent of gelsolin content. Therefore, if increases in gelsolin content result in increases in Listeria-induced rocket tail assembly rates, a positive correlation between gelsolin content and tail length would be expected. BODIPY-phalloidin staining of four different stably transfected NIH 3T3 fibroblast cell lines confirmed this expectation (r = 0.92). Rocket tails were significantly longer in cells with a high gelsolin content. Microinjection of gelsolin 1/2 (consisting of the amino-terminal half of native gelsolin) also increased bacterial velocity by more than 2.2 times. Microinjection of CapG had no effect on bacterial movement. Cultured skin fibroblasts derived from gelsolin-null mice were capable of supporting intracellular Listeria motility at velocities comparable to those supported by wild-type skin fibroblasts. These experiments demonstrated that the surface of Listeria contains a polymerization zone that can block the barbed-end-capping activity of both gelsolin and CapG. The ability of Listeria to uncap actin filaments combined with the severing activity of gelsolin can accelerate actin-based motility. However, gelsolin is not absolutely required for the actin-based intracellular movement of Listeria because its function can be replaced by other actin regulatory proteins in gelsolin-null cells, demonstrating the functional redundancy of the actin system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号