首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对分布式内冲液条件下的多孔质电极电火花加工性能进行了实验研究。实验结果表明,采用分布式内冲液方法能够达到充分降低极间蚀除产物浓度的目的,不仅可代替抬刀和平动方法,而且可采用较小的脉冲间隙以较大的占空比进行加工,获得较高的加工效率;对冲液流量影响的研究发现,随着冲液流量的增大,在冲液降低极间蚀除产物浓度和冲液干扰等离子体放电通道的双重作用下,加工材料去除率曲线变化呈现双峰值特征。通过获取极间电压和分析长连续开路时间对加工总时间的占比可知,冲液流量在增大过程中,首先使极间蚀除产物浓度降低至理想水平,再使等离子体通道扰动达到理想水平。  相似文献   

2.
Electric discharge machining (EDM) has achieved remarkable success in the manufacture of conductive ceramic materials for the modern metal industry. Mathematical models are proposed for the modeling and analysis of the effects of machining parameters on the performance characteristics in the EDM process of Al2O3+TiC mixed ceramic which are developed using the response surface methodology (RSM) to explain the influences of four machining parameters (the discharge current, pulse on time, duty factor and open discharge voltage) on the performance characteristics of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The experiment plan adopts the centered central composite design (CCD). The separable influence of individual machining parameters and the interaction between these parameters are also investigated by using analysis of variance (ANOVA). This study highlights the development of mathematical models for investigating the influences of machining parameters on performance characteristics and the proposed mathematical models in this study have proven to fit and predict values of performance characteristics close to those readings recorded experimentally with a 95% confidence interval. Results show that the main two significant factors on the value of the material removal rate (MRR) are the discharge current and the duty factor. The discharge current and the pulse on time also have statistical significance on both the value of the electrode wear ratio (EWR) and the surface roughness (SR).  相似文献   

3.
Present study investigates the influence of major operating parameters on the performance of micro-EDM drilling of cemented carbide (WC-10wt%Co) and identifies the ideal values for improved performance. The operating parameters studied were electrode polarity, gap voltage, resistance, peak current, pulse duration, pulse interval, duty ratio, electrode rotational speed and EDM speed. The performance of micro-EDM drilling process was evaluated by machining time, material removal rate (MRR), relative electrode wear ratio (RWR), spark gap, surface finish and dimensional accuracy of micro-holes. It has been found that there are two major conflicting issues in the micro-EDM of carbide. If the primary objective is to obtain better surface finish, it can be obtained by the sacrifice of high machining time, low MRR and high RWR. However, for faster micro-EDM, the surface roughness is higher and electrode wear is again much higher. It is concluded that negative electrode polarity, gap voltage of 120 V, resistance of 33 Ω, peak current of 8 A, pulse duration of 21 μs, pulse interval of 30 μs, duty cycle of 0.47, electrode rotational speed of 700 rpm and EDM speed of 10 μm/s can be considered as ideal parameters to provide improved performances during the micro-EDM of WC-Co.  相似文献   

4.
This study addresses micro-slit EDM machining feasibility using pure water as the dielectric fluid. Experimental results revealed that pure water could be used as a dielectric fluid and adopting negative polarity EDM machining could obtain high material removal rate (MRR), low electrode wear, small slit expansion, and little machined burr, compared to positive polarity machining. In comparing kerosene versus pure water, pure water was observed to cause low carbon adherence to the electrode surface. Also discharge energy does not decrease and the discharge processes are not interrupted. Therefore, MRR was higher, and related electrode wear ratio compared to kerosene use was lower. In a continual EDM with multi-slit machining, kerosene will cause carbon element adherence, creating an initially high MRR and electrode wear, with rapid decline. However, pure water will not cause carbon element adherence on the electrode surface, so MRR and electrode wear is always stable in this process.  相似文献   

5.
Maraging steel (MDN 300) exhibits high levels of strength and hardness. Optimization of performance measures is essential for effective machining. In this paper, Taguchi method, used to determine the influence of process parameters and optimization of electrical discharge machining (EDM) performance measures on MDN 300 steel, has been discussed. The process performance criteria such as material removal rate (MRR), tool wear rate (TWR), relative wear ratio (RWR), and surface roughness (SR) were evaluated. Discharge current, pulse on time, and pulse off time have been considered the main factors affecting EDM performance. The results of the present work reveal that the optimal level of the factors for SR and TWR are same but differs from the optimum levels of the factors for MRR and RWR. Further, discharge current, pulse on time, and pulse off time have been found to play a significant role in EDM operations. Detailed analysis of structural features of machined surface was done by using scanning electron microscope (SEM) to understand the influence of parameters. SEM of electrical discharge machining surface indicates that at higher discharge current and longer pulse on duration give rougher surface with more craters, globules of debris, pockmarks or chimneys, and microcracks than that of lower discharge current and lower pulse on duration.  相似文献   

6.
Ti–6Al–4V is a kind of difficult-to-cut material with poor machinability by traditional machining methods, while electrical discharge machining (EDM) is suitable for machining titanium alloys. In this paper, three input machining parameters including pulse current, pulse on time and open circuit voltage were changed during EDM tests. To investigate the output characteristics; material removal rate (MRR), tool wear ratio (TWR) and different aspects of surface integrity for Ti–6Al–4V samples such as topography of machined surface, crack formation, white layer (recast layer) thickness and microhardness were considered as performance criteria. The variations of MRR and TWR versus input machining parameters were investigated by means of main and interaction effect plots and also verified by ANOVA results. The effect of pulse energy based on pulse on time and pulse current variations against recast layer thickness and microhardness was studied. The possibility of forming different chemical elements and compounds on the work surface after EDM process was investigated by EDS and XRD analyses. The experimental results revealed that general aspects of surface integrity for machined samples are mostly affected by pulse current and pulse on time. The approximate density of cracks, micro holes and pits on the work surface is intensively dependent on pulse energy variations. Although increase of pulse energy improves the material removal efficiency but leads to increase of average thickness and microhardness of recast layer.  相似文献   

7.
In this work, the effect of pulse current and pulse duration in die-sinking electrical discharge machining (EDM) on the machining characteristics of Ti-6Al-4V alloy is studied. The EDM characteristics, including the electrode wear ratio (EWR), the material removal rate (MRR), and the surface roughness (SR), are used to measure the effect of machining. An increase in the intensity of the pulse current from 2.5 to 5 A produces a slow increase in EWR, MRR, and SR. An increase in the intensity of the pulse current from 5 to 7 A produces a rapid increase in EWR, MRR, and SR. Control charts are basic and powerful tools for controlling statistical processes and are widely used to monitor manufacturing processes and ensure good EDM quality. EWR, MRR, and SR are normal distributions, and the regression curves for the data are straight lines. All of the data points vary randomly around the centerline, which follows the Shewhart criteria and shows that the EDM process and product performance are under control and stable over time. After EDM, the surface exhibits an irregular fused structure, with pinholes, micro voids, globule debris, and many damaged surfaces. Oxygen plasma etching and surface modification after EDM reduce these surface defects, so finer and flatter surfaces can be achieved. Moreover, fatigue life can be enhanced.  相似文献   

8.
An experimental research study intended for the application of a planetary electrical discharge machining (EDM) process with copper-tungsten (Cu-W) electrodes in the surface micro-finishing of die helical thread cavities made with AISI H13 tool steel full-hardened at 53 HRC is presented. To establish the EDM parameters’ effect on various surface finishing aspects and metallurgical transformations, three tool electrode Cu-W compositions are selected, and operating parameters such as the open-circuit voltage (U 0), the discharge voltage (u e), the peak discharge current (î e), the pulse-on duration (t i), the duty factor (τ) and the dielectric flushing pressure (p in), are correlated. The researched machining characteristics are the material removal rate (MRR—V w), the relative tool wear ratio (TWR—?), the workpiece surface roughness (SR—Ra), the average white layer thickness (WLT—e wl) and the heat-affected zone (HAZ—Z ha). An empirical relation between the surface roughness (SR—Ra) and the energy per discharge (W e) has been determined. It is analysed that copper-tungsten electrodes with negative polarity are appropriate for planetary EDM die steel surface micro-finishing, allowing the attaining of good geometry accuracy and sharp details. For die steel precision EDM, the relative wear ratio optimum condition and minor surface roughness takes place at a gap voltage of 280 V, discharge current of 0.5–1.0 A, pulse-on duration of 0.8 μs, duty factor of 50%, dielectric flushing pressure of 40 kPa and copper tungsten (Cu20W80) as the tool electrode material with negative polarity. The copper-tungsten electrode’s low material removal rate and low tool-wear ratio allows the machining of EDM cavity surfaces with an accurate geometry and a “mirror-like” surface micro-finishing. A planetary EDM application to manufacture helical thread cavities in steel dies for polymer injection is presented. Conclusions are appointed for the planetary EDM of helical thread cavities with Cu-W electrodes validating the accomplishment as a novel technique for manufacturing processes.  相似文献   

9.
This paper reports on an experimental investigation of small deep hole drilling of Inconel 718 using the EDM process. The parameters such as peak current, pulse on-time, duty factor and electrode speed were chosen to study the machining characteristics. An electrolytic copper tube of 3 mm diameter was selected as a tool electrode. The experiments were planned using central composite design (CCD) procedure. The output responses measured were material removal rate (MRR) and depth averaged surface roughness (DASR). Mathematical models were derived for the above responses using response surface methodology (RSM). The results revealed that MRR is more influenced by peak current, duty factor and electrode rotation, whereas DASR is strongly influenced by peak current and pulse on-time. Finally, the parameters were optimized for maximum MRR with the desired surface roughness value using desirability function approach.  相似文献   

10.
The advantages of electrical discharge machining (EDM) in machining of complex ceramic components have promoted research in the area of EDM of ceramic composites. The recent developments in ceramic composites are focused not only on the improvements of strength and toughness, but also on possibilities for difficult-to-machine shapes using EDM. One such EDM-machinable ceramic composite material (Al2O3–SiCw–TiC) has been developed recently and has been selected in the present study to investigate its EDM machinability. Experiments were conducted using discharge current, pulse-on time, duty cycle and gap voltage as typical process parameters. The grey relational analysis was adopted to obtain grey relational grade for EDM process with multiple characteristics namely material removal rate and surface roughness. Analysis of variance was used to study the significance of process variables on grey relational grade which showed discharge current and duty cycle to be most significant parameters. Other than discharge current and duty cycle, pulse-on time and gap voltage have also been found to be significant. To validate the study, confirmation experiment has been carried out at optimum set of parameters and predicted results have been found to be in good agreement with experimental findings.  相似文献   

11.
Electro-discharge machining (EDM) is an enormously used nonconventional process for removing material in die making, aerospace, and automobile industries. It consists of limitations like poor volumetric material removal rate (MRR) and reduced surface quality. Powder mixed EDM (PMEDM) is a new development in EDM to enhance its machining capabilities. The present work investigates the effect of powder concentration (Cp), peak current (Ip), pulse on time (Ton), duty cycle (DC) and gap voltage (Vg) on MRR, tool wear rate (TWR), electrode wear ratio (EWR), and surface roughness (SR) simultaneously for H-11 die steel using SiC powder. Taguchi's L27 orthogonal array has been used to conduct the experiments. Multiobjective optimization using grey relational analysis (GRA) and technique for order of preference by similarity to ideal solution (TOPSIS) has been used to maximize the MRR and minimize the TWR, EWR, and SR and determine the optimal set of process parameters. Analysis of variance (ANOVA) has been performed to understand the significance of each process parameter. Results were verified by conducting confirmatory tests. GRA and TOPSIS exhibit an improvement of 0.1843 and 0.14308 in the preference values, respectively. Microstructure analysis has been done using scanning electron microscope (SEM) for the optimum set of parameters.  相似文献   

12.
Electrical discharge machining (EDM) is an excellent method to machine tungsten carbide with high hardness and high toughness. However, debris from this material produced by EDM re-sticking on the workpiece surface remarkably affects working efficiency and dimension precision. Therefore, this study investigated the re-sticky phenomenon of tungsten carbide and how to reduce the debris re-sticking on the workpiece surface. In general, the polarity in EDM depended on the different electrical parameters of the machine input and the different materials of the tool electrode. The first item of investigation observed the re-sticky position of the debris to study the effect of different polarities during the EDM process. Next, the tool electrode was set at different conditions without rotation and with a 200 rpm rotational speed to evaluate the rotating effect in EDM. Finally, different lift distances of the electrode and different shapes of electrode with rotation were utilized to investigate the improvement for reducing debris re-sticking on the machining surface. The results showed that only negative polarity in EDM could cause the re-sticky phenomenon on tungsten carbide. On the other hand, debris would notably re-stick on any machining position when the tool electrode was not rotated in EDM. Besides, debris significantly stuck on the center of the working area with rotation of the electrode. Additionally, a larger lift distance of the tool electrode could reduce debris re-sticking on the working surface, but this process would decrease material removal rate in EDM. In the end, a special shaped design of the tool electrode resulted in the re-sticky debris completely vanishing, when the electrode width was 0.6 times the diameter of this cylindrical electrode.  相似文献   

13.
This paper deals with the effect of copper tool vibration with ultrasonic (US) frequency on the electrical discharge machining (EDM) characteristics of cemented tungsten carbide (WC-Co). It was found that ultrasonic vibration of the tool (USVT) was more effective in attaining a high material removal rate (MRR) when working under low discharge currents and low pulse times (finishing regimes). In general, the surface roughness and the tool wear ratio (TWR) were increased when ultrasonic vibration was employed. It was observed that application of ultrasonic vibration significantly reduced arcing and open circuit pulses, and the stability of the process had a remarkable improvement. This study showed that, there were optimum conditions for ultrasonic assisted machining of cemented tungsten carbide, although the conditions may vary by giving other input parameters for those which had been set constant in the present work.  相似文献   

14.
A novel aluminium metal matrix composite reinforced with SiC particles were prepared by liquid metallurgy route. Recent developments in composites are not only focused on the improvement of mechanical properties, but also on machinability for difficult-to-machine shapes. Electrical discharge machining (EDM) was employed to machine MMC with copper electrode. using EDM. Experiments were conducted using pulse current, gap voltage, pulse on time and pulse off time as typical process parameters. The experiment plan adopts face centered central composite design of response surface methodology. Analysis of variance was applied to investigate the influence of process parameters and their interactions viz., pulse current, gap voltage, pulse on time and pulse off time on material removal rate (MRR), electrode wear ratio (EWR) and surface roughness (SR). The objective was to identify the significant process parameters that affect the output characteristics. Further a mathematical model has been formulated by applying response surface method in order to estimate the machining characteristics such as MRR, EWR and SR.  相似文献   

15.
Electrical discharge machining (EDM) is a process that can be used effectively to machine conductive metals regardless of their hardness. In the EDM process, material removal occurs because of the thermal energy of the plasma channel between the electrode and the workpiece. During EDM, the electrode as well as the workpiece is abraded by the thermal energy. Tool wear adversely affects the machining accuracy and increases tooling costs. Many previous studies have focused on mitigating the problems of tool wear by investigating various EDM parameters. In this study, the tool wear problem was investigated on the basis of the mobilities of electrons and ions in the plasma channel. The material removal volumes of both the electrode and the workpiece were compared as functions of the gap voltage. The material removal difference according to the capacitance was also investigated. The tool wear ratio was calculated under different EDM condition and an EDM conditions for reducing the tool wear ratio was suggested.  相似文献   

16.
超声电火花复合加工速度工艺试验研究   总被引:2,自引:0,他引:2  
电火花加工的最大缺点是加工速度低,为了解决这个问题,人们进行了各种试验研究。其中超声电火花复合在加工小孔中可一定程度地提高加工速度,但就其作用机理和适用范围仍存在许多争论。本次试验在D703F高速电火花小孔加工机床上附加陶瓷换能器和变幅杆,通过夹紧装置将变幅杆与工具电极相连,实现电极超声振动的电火花小孔加工。在不同的电参数(电流强度和脉冲宽度)和电极参数(电极直径)下,进行了2种加工方法下的加工速度对比试验。找到了在加工小孔时,是否采用超声电火花复合加工工艺的分界点,对其增加加工速度的现象提出了新的解释。  相似文献   

17.
Hybrid machining processes (HMPs), having potential for machining of difficult to machine materials but the complexity and high manufacturing cost, always need to optimize the process parameters. Our objective was to optimize the process parameters of electrical discharge diamond face grinding (EDDFG), considering the simultaneous effect of wheel speed, pulse current, pulse on-time and duty factor on material removal rate (MRR) and average surface roughness (Ra). The experiments were performed on a high speed steel (HSS) workpiece at a self developed face grinding setup on an EDM machine. All the experimental results were used to develop the mathematical model using response surface methodology (RSM). The developed model was used to generate the initial population for a genetic algorithm (GA) during optimization, non-dominated sorting genetic algorithm (NSGA-II) was used to optimize the process parameters of EDDFG process. Finally, optimal solutions obtained from pareto front are presented and compared with experimental data.  相似文献   

18.
The grinding cost of metal matrix composite materials is more due to low removal rates and high rates of wear of super abrasive wheels. This electrolytic in-process dressing (ELID) technique uses a metal-bonded grinding wheel that is electrolytically dressed during the grinding process for abrasives that protrude continuously from super abrasive wheels. This research carries out ELID grinding using various current duty ratios and conventional grinding of 10% SiCp reinforced 2,124 aluminium composite materials. Normal forces and tangential forces are monitored. Surface roughness of the ground surface, Vickers hardness numbers and metal removal rate (MRR) are measured. The results show that the cutting forces in the ELID grinding are unstable throughout the grinding process due to the breakage of an insulating layer formed on the surface of grinding wheel and are less than conventional grinding forces. A smoother surface can be obtained at high current duty ratio in ELID grinding. The micro-hardness is reduced at high current duty ratio. In ELID, the MRR increases at high current duty ratio. The results of this investigation are presented in this paper.  相似文献   

19.
Effects of Powder Characteristics on Electrodischarge Machining Efficiency   总被引:9,自引:3,他引:6  
This paper presents the effects of various powder characteristics on the efficiency of electrodischarge machining (EDM) SKD-11. The additives examined include aluminium (Al), chromium (Cr), copper (Cu), and silicon carbide (SiC) powders that have significant differences in their thermophysical properties. The machining mechanism with the addition of the foreign particles, the tool wear rate (TWR), and the material removal rate (MRR) have been investigated. It was found experimentally that the particle concentration, the particle size, the particle density, the electrical resistivity, and the thermal conductivity of powders were important characteristics that significantly affected the machining performance in the EDM process. Proper addition of powders to the dielectric fluid increased the MRR and, thus, decreased the TWR. Under the same particle concentration experiments, the smallest suspended particle size led to the greatest MRR and, thus, the lowest TWR. Of the additives investigated, chromium powder produced the greatest MRR and the lowest TWR, whereas the process without foreign particles has the converse effects. The addition of copper powder to the dielectric fluid was found to make almost no difference to the pure kerosene EDM system.  相似文献   

20.
从研究水分散剂的分散机理入手,分析研究了水分散剂对电火花小孔加工的排屑、加工速度和加工质量的影响。通过电火花小孔加工中采用自来水工作液和分散剂工作液的加工效果对比,发现在电火花小孔加工的水基工作液中加入一定比例的分散剂后,不仅使电火花小孔加工的加工速度提高、电极相对损耗降低,而且有效脉冲数增加,二次放电数明显减少,工具电极作用端和被加工孔的锥度变小,加工质量提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号