首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
提出了一种新型的光电集成加速度地震检波器,这是一种全新的微光机电系统(MOEMS),为实现硅基底上的光波导M-Z干涉仪的相位调制,采用了声光相位调制的方法,该相位调制器利用叉指换能器(IDT)激发出声表面波(SAW)实现对光波导的相位调制,在对光波导声光相位调制机理深入研究的基础上,设计并制作了器件,实验结果与理论相一致。  相似文献   

2.
Low sidelobe longitudinal slot array antennas are investigated based on substrate integrated waveguide (SIW) technology. The design method consists of the characterisation of the radiating element, the synthesis of the linear array and the development of the planar array including a feeding power divider by performing fullwave electromagnetic simulations for the final accurate design. Two planar slot array antennas are fabricated with a normal printed circuit board (PCB) process. Low sidelobe features are verified by the measured results which are in agreement with the simulated results. For an 8 x 8 SIW slot array antenna, the measured sidelobe levels (SLLs) are below 236 dB in the H-plane and below 225 dB in the E-plane with the Gain of 20.3 dB at 9.9 GHz. And for a 16 x 16 antenna, the SLLs are below 230 dB both in the E-plane and H-plane with the Gain of 24.4 dB at 10 GHz. The achieved design goals on the radiation patterns therefore validate the proposed low sidelobe SIW slot array antennas to be valuable candidates for high performance communication and radar applications.  相似文献   

3.
A SAW waveguide directional coupler that was used to provide a raised-cosine apodization of the SAW beam intensity, in order to achieve sidelobe suppression of an integrated acoustooptic filter, is demonstrated. The SAW guide coupler consisted of two closely spaced, evanescently coupled parallel acoustic waveguides. A single guided SAW mode was excited by a miniature transducer imbedded in a 100-mum-wide waveguide, and in excess of 99% of the SAW energy was transferred from the original waveguide to the coupled guide, and back, across a gap of 20 mum. The coupling length (for complete crossover) was 9.8 mm and depended exponentially on gap, as expected. This SAW coupler resulted in 10-dB sidelobe suppression compared to an unapodized acoustooptic filter.  相似文献   

4.
Liu Q  Gao S  Li Z  Xie Y  He S 《Applied optics》2011,50(9):1260-1265
A proposal for broadband wavelength conversion using four-wave mixing is presented based on a slot waveguide with silicon nanocrystals (Si-nc's) as the optical nonlinear material. The dispersion of the waveguide is engineered to realize a flat dispersion as well as a small effective mode area for better nonlinear interaction by optimizing the waveguide dimensions. The conversion performance is synthetically analyzed and numerical results show that a bandwidth of over 400?nm and an efficiency of -2.38?dB can be achieved using a pump power of 150?mW in a 4?mm long Si-nc slot waveguide with slot width of 50?nm, slab width of 310?nm, and height of 305?nm.  相似文献   

5.
Surface acoustic wave (SAW) propagation characteristics have been studied using modeling calculations for a potassium niobate (KNbO/sub 3/) thin film-layered structure with [001] and [110] orientation on a single crystal spinel (MgAl/sub 2/O/sub 4/) substrate, and a spinel buffer layer on silicon. Variation in the electromechanical coupling and acoustic attenuation has been compared. A significantly high value of coupling factor (k/sub max//sup 2/=23%) is obtained for the [001]KNbO/sub 3//spinel structure by introducing an optimum thickness of spinel over-layer for potential wide bandwidth SAW device applications. The dispersion characteristics with the [110] KNbO/sub 3/ orientation indicate an initial peak in the coupling coefficient value (k/sub max//sup 2/=8.8%) at a relatively low KNbO/sub 3/ film thickness that appears attractive for fabricating devices with thinner films. The KNbO/sub 3/ film with [001] orientation is found attractive for efficient acousto-optic (AO) device application with the formation of a symmetric waveguide structure (spinel(0.5 /spl mu/m)/KNbO/sub 3/(1.0 /spl mu/m)/spinel). A high value of k/sup 2/=23.5% with 50% diffraction efficiency has been obtained for the spinel(0.5 /spl mu/m)/KNbO/sub 3/(1.0 /spl mu/m)/spinel structure at 1 GHz SAW frequency and 633 nm optical wavelength at a very low input drive power of 15.4 mW.  相似文献   

6.
A system for imaging the particle displacement envelope of vibrational (transverse) modes of surface acoustic wave (SAW) devices is described. The modes are being imaged using a schlieren method for visualizing the acoustic power flow with a beam-expanded helium-neon (HeNe) laser. The optical arrangement uses internal reflection from within the quartz substrate to achieve high-efficiency acousto-optic diffraction of the laser light. The use of a CCD camera coupled with a frame grabber and a computer with image calculator software establishes an imaging system for large-area, real-time visualization, recording, accurate measurement, and analysis of vibrational modes of SAW devices. These methods are part of an effort to determine the relationship between acceleration sensitivity and transverse variations in the acoustic-mode shape in SAW resonators. Use of the system in imaging a 98 MHz SAW device is presented as an example  相似文献   

7.
Electrode width controlled (EWC) single-phase, unidirectional transducers (SPUDT) is widely used for low loss surface acoustic wave (SAW) filters. The insertion loss and fractional bandwidth of the filters are strongly related to the reflectivity of EWC cells. In order to achieve wide band and low loss simultaneously, it is necessary to obtain higher reflectivity. The relationship between geometrical configuration of EWC cells and reflection coefficient, (and transduction coefficient as well) is studied. Simulation results indicate that the reflectivity of the EWC SPUDT cell could exceed 5% on a 128/spl deg/ Y-X lithium niobate (LiNbO/sub 3/) substrate. Using such structure, low loss SPUDT test filters without weighting are fabricated. The measured 3 dB bandwidth is 3.9% and the insertion loss is 2.9 dB. The theoretical calculation is verified by the experiment.  相似文献   

8.
Surface acoustic wave (SAW) impedance element antenna duplexers provide compact, high performance, front-end components apt for industrial fabrication. We describe investigations on the design and modeling of a compact ISM antenna duplexer fabricated on a 36° YX-cut LiTaO3 substrate based on SAW impedance elements. In particular, we have performed 3-D modeling of the inductive and capacitive electromagnetic couplings caused by the package parasitics for the duplexer. The use of a 1:3 IDT structure for the reduction of the passband width is discussed. The frequency response of the duplexer is predicted with the help of circuit simulation; the modeling is refined by optimization of the model parameters to improve the fit between the measured and simulated responses. We also report scanning optical imaging of the acoustic field within the resonator structures with the help of laser interferometry; this provides insight into the loss mechanisms beyond that attainable in mere electric measurements  相似文献   

9.
This paper presents an analysis of a new type of feedthrough recursive surface acoustic wave (SAW) device. The device combines a conventional SAW structure with positive feedback in a way that allows use of selective properties of the SAW structure, control of the central frequency and bandwidth, achieving significantly higher quality factors for given dimensions of the structure, and reduction of the sidelobe level. Several possible implementations are discussed from a simple one that uses external circuitry to the most advanced that includes digital supervisory control. Equations are presented that relate the central frequency, bandwidth, and sidelobe level to the parameters of the SAW structure and feedback loop. The simulation results were found to be in good agreement with experimental data. These data show the control of the central frequency within 1%, a 10-fold increase in the quality factor compared to the original SAW structure, and a reduction of the side-lobe level by 20 dB irrespective of the influence of second order effects and random manufacturing fluctuations.  相似文献   

10.
The results of a detailed theoretical study on collinear guided wave to leaky wave acoustooptic (AO) interactions in proton-exchanged LiNbO(3) (PE:LiNbO(3)) planar waveguides are presented. The guided-to-leaky mode conversion for an input optical beam at the wavelength of 632.8 nm by the induced diffraction grating from a collinear surface acoustic wave (SAW) is analyzed using a generalized multimode formulation of the coupled mode theory. Mode conversion efficiency and AO bandwidth have been calculated as functions of acoustic frequency, interaction length, guiding layer thickness, and acoustic drive power density for three cuts of the LiNbO(3) substrate. High performance configurations that are desirable for application to demultiplexing and switching in optical communication systems are identified, and the corresponding channel capacity and frequency resolution are determined. For example, it was shown that the X-cut configuration features the highest mode conversion efficiency. However, a relatively small AO bandwidth is associated with this configuration. Both high mode conversion efficiency and large AO bandwidth can be accomplished at the guiding layer thickness of 1.0 mum. A TM(o)-->TE(nu) mode conversion efficiency as high as 42% together with an AO bandwidth of approximately 70 MHz can be achieved in the Z-cut waveguide at the guiding layer thickness of 1.0 mum, acoustic drive power density of 50 mW/mm, interaction length of 40 mm, and acoustic frequency of 460 MHz. The corresponding channel capacity and frequency resolution are 745 and 0.09 MHz, respectively. Measured mode conversion efficiencies as high as 90 and 78% obtained at the acoustic frequencies of 107 and 367 MHz using the X-cut substrate and the Y-propagation SAW have verified the theoretical prediction on the mode conversion efficiencies.  相似文献   

11.
By anodic oxidation of the edges of the portions of the Al film under photoresist, controllable gaps between electrodes with good insulation can be obtained. These techniques are applied to realize a surface-acoustic-wave (SAW) narrow gap interdigital transducer (NG-IDT) and narrow gap unidirectional transducer (NG-UDT). The experimental result shows 7.2 dB insertion loss with amplitude ripples of +/-1.2 dB for a conventional NG-IDT. Directives of 3-dB/transducer at 440 MHz (fundamental) and 13-dB transducer at 870 MHz (second-harmonic operation) for a new floating electrode type unidirectional transducer (NG-FEUDT) are demonstrated. Also a three transducer low loss filter using a combination of NG-IDT and NG-FEUDT exhibits 3.46 dB insertion loss at 894 MHz (second-harmonic operation, electrode width of 1.7 mum) with sidelobe suppression greater than 35 dB.  相似文献   

12.
The SAW waveguide technique was used to form a novel reflector-filter for the realization of compact IF filters in CDMA handsets. The reflector-filter design is an attractive technique to obtain characteristics with steep skirts in a short device length, because the SAW propagation path is folded and the frequency response is synthesized by utilizing both IDT and reflector responses. In this paper, we propose a new reflector-filter structure using a SAW waveguide directional coupler. For the implementation of the proposed reflector-filter, the key technology is the design of SAW waveguides. We have formed SAW waveguides using Al gratings loaded on the surface of the substrate. The pitch of the Al gratings has been chosen unequal to half the acoustical wavelength to avoid the occurrence of the gratings stopband at the filters passband position. Using the proposed reflector-filter structure, PCS-CDMA IF filters were fabricated on quartz substrates. The filter exhibited an insertion loss of 8.5 dB, a 5 dB bandwidth of 1.45 MHz, and a rejection of more than 33 dB at the center frequency +/-1.25 MHz with the package size of 4.8x9.1 mm (2). i.e., half the size of a conventional transversal filter was achieved using the proposed reflector-filter technique.  相似文献   

13.
We propose a slot-width switching (SWS) silicon–organic hybrid waveguide for broadband and efficient wavelength conversion. By switching the slot width of different lengths, the quasi-phase-matching can be obtained. Compared with width-modulated silicon-on-insulator (SOI) waveguide, the non-linear absorption can be ignored in slot waveguide which is filled with p-toluene sulphonate. Consequently, the conversion efficiency at a particular signal wavelength is improved, and the 3-dB conversion bandwidth is also extended. The numerical simulation results indicate that, for a continuous-wave pump at 1550 nm, a conversion bandwidth of 570 nm and a peak conversion efficiency of 11.32 dB can be realized in a 7.5-mm-long SWS waveguide, which is better than that of width-modulated SOI waveguide.  相似文献   

14.
This paper describes a method for widening the passband of transversely coupled resonator filters (TCF) using only the fundamental symmetric and antisymmetric modes. The coupling of modes analysis in the transverse direction is applied to the TCF design to investigate the passband width. As a result, it is found that the passband width can be increased by making the surface acoustic wave (SAW) velocity difference between the interdigital transducer (IDT) region and the resonator gap region smaller. It is proposed that a grating structure be applied to the common ground bar, instead of the uniform metal, to reduce the SAW velocity difference. Using the grating-type common ground bar, filters are fabricated on ST-quartz substrate. The passband of a single filter with a center frequency of 248 MHz is widened up to 410 kHz without any increase of the insertion loss. The effect of the impedance mismatch at the junction of two cascaded devices is investigated. It is shown that the filter performance is improved by reduction of the small parasitic capacitance existing at the cascade point. Experimentally, the capacitance formed between the bus bar of the IDT and the bottom surface of the ceramic package is reduced. The insertion loss is reduced by 0.0 dB, and 3 dB passband is widened by 8 kHz for a filter with a center frequency of 248 MHz. On the basis of these two improvements, cascaded TCFs are fabricated. For a filter with a center frequency of 248 MHz, an insertion loss of 5.5 dB and a 3-dB passband width of 270 kHz are obtained  相似文献   

15.
低损耗离子交换玻璃基光波导制备与分析   总被引:2,自引:0,他引:2  
考虑到离子交换和离子扩散工艺的特殊要求, 设计并熔制了适合于离子交换工艺的硅酸盐玻璃材料SiO2-B2O3-Al2O3-R’O-R2O(R’=Ca, Mg; R=Na, K). 采用Ag+/Na+熔盐离子交换和电场辅助离子扩散工艺在这种玻璃材料基片上获得了掩埋式条形光波导. 光学显微镜和电子探针分析表明高折射率的Ag+扩散区位于玻璃基片表面以下约10μm处, 形成光波导的芯部. 光波导芯部尺寸约为8μm×8μm, 与单模光纤芯径尺寸相当, 保证了较低的光纤耦合损耗. 对光波导的测量结果得出:在波长为1.5μm处条形光波导的传输损耗约为0.1dB/cm, 与单模光纤的耦合损耗约为0.2~0.3dB. 条形光波导的传输损耗与材料本身的损耗接近, 表现出掩埋式光波导的低损耗特征. 分析表明, 经过进一步优化, 这种光波导制备技术可用于低损耗光波导器件的制作.  相似文献   

16.
Surface acoustic wave (SAW) properties of proton-exchanged (PE) z-cut lithium niobate (LiNbO3) waveguides with silicon dioxide (SiO2) film layers were investigated using octanoic acid. The distribution of hydrogen measured by secondary ion mass spectrometry (SIMS) showed a step-like profile, which was assumed to be equal to the waveguide depth (d). The SiO2 film was deposited on z-cut LiNbO3 waveguide by radio frequency (rf) magnetron sputtering. We investigated the important parameters for the design of SAW devices such as phase velocity (Vp), insertion loss (IL) and temperature coefficient of frequency (TCF) by a network analyzer using thin-film aluminum interdigital transducer electrodes on the upper SiO2 film surface. The experimental results showed that the Vp of SAW decreased slightly with the increase of h/lambda, where h was the thickness of SiO2 films and lambda was the wavelength. The IL of SAW increased with increased h/lambda. The TCF of SAW calculated from the frequency change of the output of SAW delay line showed an evident decrease with the increase of h/lambda. The TCF for PE z-cut LiNbO3 was measured to be about -54.72 ppm/degreees C at h/lambda = 0.08. It revealed that the SiO2 films could compensate and improve the temperature stability as compared with the TCF of SAW on PE samples without SiO2 film.  相似文献   

17.
The purpose of this study is to estimate the complete crosstalk effects, including the package and the pads on the surface acoustic wave (SAW) substrate. The coupling influence from the SAW pattern is investigated by the full-wave approach. In order to combine the electromagnetic effects with the surface acoustic wave response, a new approach based on finite difference time domain (FDTD) with equivalent current source method is applied. The resistive voltage source model is carefully used to simulate the situations of measurement by the vector network analyzer more accurately. Two kinds of patterns of one-port SAW resonators with the same package structure and interdigital transducer (IDT) design are studied. From the simulated electromagnetic field distributions over the substrate, it can be seen that, as the pattern on the SAW substrate becomes closer, more input energy will be coupled directly to the parallel pads by crosstalk without filtering. This will lead to more coupling loss and, therefore, the insertion loss becomes universally lower by about 2 to 3 dB. Furthermore, it can be observed that the coupling interference from the SAW pattern is more serious than from the package in this case. Verification with the measurement results shows that our method is able to obtain good agreement and can be used to observe the influence from the SAW pattern that can seriously affect the performance of the SAW device.  相似文献   

18.
The purpose of this study is to estimate the complete crosstalk effects, including the package and the pads on the surface acoustic wave (SAW) substrate. The coupling influence from the SAW pattern is investigated by the full-wave approach. In order to combine the electromagnetic effects with the surface acoustic wave response, a new approach based on finite difference time domain (FDTD) with equivalent current source method is applied. The resistive voltage source model is carefully used to simulate the situations of measurement by the vector network analyzer more accurately. Two kinds of patterns of one-port SAW resonators with the same package structure and interdigital transducer (IDT) design are studied. From the simulated electromagnetic field distributions over the substrate, it can be seen that, as the pattern on the SAW substrate becomes closer, more input energy will be coupled directly to the parallel pads by crosstalk without filtering. This will lead to more coupling loss and therefore, the insertion loss becomes universally lower by about 2 to 3 dB. Furthermore, it can be observed that the coupling interference from the SAW pattern is more serious than from the package in this case. Verification with the measurement results shows that our method is able to obtain good agreement and can be used to observe the influence from the SAW pattern that can seriously affect the performance of the SAW device.  相似文献   

19.
The applicability of LiNbO3, langasite and GaPO4 for use as crystal substrates in high temperature surface acoustic wave (SAW) sensors operating at radio frequencies was investigated. Material properties were determined by the use of SAW test devices processed with conventional lithography. On GaPO4, predominantly surface defects limit the accessible frequencies to values of 1 GHz. Langasite SAW devices could be operated up to 3 GHz; however, high acoustic losses of 20 dB/micros were observed. On LiNbO3, the acoustic losses measured up to 3.5 GHz are one order of magnitude less. Hence, SAW sensors capable of wireless interrogation were designed and processed on YZ-cut LiNbO3. The devices could be successfully operated in the industrial-scientific-medical (ISM) band from 2.40 to 2.4835 GHz up to 400 degrees C.  相似文献   

20.
Tunable surface acoustic wave (SAW) filters (TSF) have been widely used in the wireless telecommunication systems. A prototype of multi-IDT (interdigital transducer) input TSF has been developed. The device consists of 11 IDTs paralleled in the SAW propagation path. Different SAW filter configurations are realized by selecting or combining various IDTs, resulting in the tunability of both center frequency and 3 dB bandwidth. The center frequencies of the SAW filter range from 126.8 to 199.1 MHz; the 3 dB bandwidths range from 15.2 to 58.9 MHz. Impedance weighting methods have been applied. The passband ripple has been reduced from 6.44 to 1.37 dB after resistance weighting  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号