首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The role played by the catalyst in the mehhanol-to-gasoline process under varying conditions is significant. The mobil ZSM-5 catalyst yielded dimethyl ether as a major product in earlier experiments conducted in the Chemical Engineering Department. This prompted us to ascertain those parameters which yielded a high percentage of gasoline and minimized or eliminated dimethyl ether. A number of parameters like residence time, reaction temperature, and methanol catalyst weight ratio were studied and knowledge regarding how best a high gasoline yield could be produced was obtained. Product characterization was done by gas chromatographic analysis. GC-MS proved to be an extremely beneficial tool.  相似文献   

2.
MethanoI-to-Gasoline (MTG) process is an excellent process which produces aromatics-rich gasoline from methanol over the ZSM-5 catalyst. The methanol feed in this process is usually derived from coal or natural gas based syngas.

The dehydration of methanol to dimethyl ether (DME) is a key intermediate step in converting methanol into gasoline. The substitution of syngas-to-methanol step in the MTG process by the direct one stage conversion of syngas-to-DME is thus a very attractive option. This substitution is particularly justified on the basis of the fact that DME results in virtually identical hydrocarbon product distribution as methanol.

Synthesis of gasoline via this direct DME route has several significant advantages over the MTG process, in the areas of product yield, selectivity, overall syngas conversion, exothermicity, and reactor size. The conceptual advantages of this DME-to-gasoline (DTG) process can be demonstrated in a laboratory scale fluidized bed gasoline synthesis unit.

This paper discusses the design philosophy of the fluidized bed reactor unit and its peripherals. The fabrication, assembly, and operation of the unit have also been discussed in detail.  相似文献   

3.
催化裂化操作参数对降低汽油烯烃含量的影响   总被引:20,自引:6,他引:14  
针对催化裂化汽油烯烃含量较高的情况,在中型提升管催化裂化装置上,考察了原料油性质、催化剂性质、反应条件、汽油馏程等对汽油烯烃含量的影响,提出了工业生产装置降低催化裂化汽油烯烃含量的措施。研究发现,催化裂化汽油烯烃含量与氢转移指数(异丁烷/丁烯及异丁烷/异丁烯)呈线性关系,氢含量高、K值大的原料油,汽油烯烃含量较高。使用降烯烃催化剂、提高催化剂活性、提高剂油比、降低反应温度、延长反应时间、提高烃分压、提高汽油终馏点等有利于降低催化裂化汽油烯烃含量。  相似文献   

4.
直馏汽油非临氢改质技术的工业应用   总被引:5,自引:1,他引:4  
摘要扬州石油化工厂20 kt/a直馏汽油非临氢改质装置的运行结果表明,石油化工科学研究院开发的RGw-l型直馏汽油非临氢改质催化剂的活性、选择性高,单程运转周期大于70 d,再生后反应性能完全恢复。改质反应产品收率高,干气产率小于2%。产品品质好,改质后汽油RoN提高30个单位以上,烯烃质量分数小于2%,是汽油降烯烃的优质调合组分;副产液化气的烷烃体积分数达95%以上,可以作为车用液化气。该催化剂还可用于含ct烯烃原料的改质。为直馏汽油和c。馏分的升值利用及炼油厂汽油降烯烃开辟了一条新途径。  相似文献   

5.
介绍了阳离子交换树脂催化剂Amberlyst 35在A、B两公司催化裂化轻汽油醚化装置上工业应用的情况。工业应用结果表明:Amberlyst 35催化剂具有活性高及开工过程简单等特点,在Amberlyst 35催化剂作用下,A公司和B公司均可生产出低烯烃含量、高辛烷值的醚化汽油产品;经过三段醚化后,A公司工况一和工况二的异戊烯总转化率分别为97.59%、95.54%,甲基叔戊基醚的选择性分别为93.48%、97.15%;B公司的异戊烯总转化率为97.21%,甲基叔戊基醚的选择性为87.15%。  相似文献   

6.
 针对催化粗汽油回炼改质过程能耗偏高的现状,进行了以降低辅助提升管油/剂接触温差和优化辅助分馏塔油气热量利用为内容的过程用能改进。工程实施结果表明,利用装置低温余热提高粗汽油回炼温度,可通过多发生5.7t/h的中压蒸汽,将辅助分馏系统的较低品质热量置换出等量的反-再系统的高品质热量;同时,辅助分馏塔中段回流热和循环油浆热量的升级利用,使得催化粗汽油回炼改质工艺的用能状况大为改善。优化改进后的有效热利用提高,干气和焦炭的产率下降,使现有的50t/h粗汽油回炼改质催化装置能耗降低4.4 (kg 标油)/ (t原料),且汽油质量得到提高。  相似文献   

7.
在连续流动固定床装置上,探讨了非贵金属Ni/HZSM-5催化剂对裂解汽油选择加氢裂化反应的特征,考察了镍含量、温度、压力、空速及氢烃体积比等参数的影响。随镍含量的增加,裂解汽油中C6+非芳烃转化率先增加后减小,镍含量为2.1%左右较为适宜。工艺条件中温度和压力的影响较大,空速次之,氢烃体积比最小。在380 ℃、3.0 MPa、质量空速1.245 h-1、氢烃体积比1 000的条件下,以镍含量为2.1%的Ni/HZSM-5为催化剂,65 h内裂解汽油中C6+非芳烃组分转化率保持在95%以上,而芳烃转化率仅有13%; 加氢裂化产物中,C2+正构烷烃达80.96%,其中丙烷60.71%,而甲烷和异构烷烃较少。这表明非贵金属Ni/HZSM-5催化剂可高选择性地裂化C6+非芳烃,适用于裂解汽油加氢裂化制备芳烃联产低碳烷烃。  相似文献   

8.
提高汽油辛烷值的芳构化技术   总被引:15,自引:1,他引:14  
介绍了洛阳石油化工工程公司炼制研究所开发的劣质汽油芳构化改质技术,利用芳构化技术改质直馏汽油,可以得到64.4%的高辛烷值汽油,并副产30.2%的液化石油气,所产高辛烷值汽油基本符合我国90号无铅汽油质量要求。试验证明新开发的催化剂具有良好的活性和稳定性,催化剂单程操作周期在15天以上。该技术为炼油厂汽油质量的升级开辟了一条新路,具有推广前景。  相似文献   

9.
Gasoline has been synthesized from oxygenates (dimethyl ether and methanol) on a HZSM-5 zeolite catalyst, modified by palladium and zinc, in a micropilot unit operating in the continuous recycle flow mode. The influence of the gas atmosphere composition—synthesis gas, hydrogen, and methane—on the gasoline selectivity, and on-stream stability of the catalyst has been determined for dimethyl ether (DME) used as a feedstock. The hydrocarbon composition and the carbon distribution in the products have been compared using DME and methanol as the feedstock in the synthesis-gas atmosphere. It has been shown that the higher gasoline selectivity production in the case of methanol is due to the higher concentration of aromatic hydrocarbons, which is achieved by decreasing the intensity of their dealkylation.  相似文献   

10.
降低催化裂化汽油烯烃含量的中型试验研究   总被引:4,自引:0,他引:4  
在中型提升管催化裂化试验装置上详细考察了原料油性质、催化剂类型以及操作条件对催化裂化汽油烯烃含量的影响.原料油性质是决定催化裂化汽油烯烃含量高低的关键,选择氢转移活性高的稀土Y型催化剂是降低催化裂化汽油烯烃含量的有效措施.选择适宜的反应温度和油气停留时间,适当提高剂油比和催化剂活性,均可以在一定程度上降低催化裂化汽油烯烃含量.  相似文献   

11.
分析了典型焦化汽油烃类组成特点,重点研究焦化汽油催化裂解反应过程中反应转化率以及低碳烯烃的产率和选择性的主要影响因素。结果表明,催化裂解反应条件下焦化汽油转化率较低,提高反应温度是提高低碳烯烃产率的有效手段,但是目标产物的选择性变化不大;采用高选择性的催化剂可以在提高乙烯和丙烯产率的同时提高其选择性,并达到少产丁烯的目的。焦化汽油的正构烷烃转化程度低,尤其是C5~C7正构烷烃转化程度不足60%,是因其分子碳链短,所形成的正碳离子的β断裂反应不易发生所致。  相似文献   

12.
中国石化安庆分公司0.2 Mt/a焦化汽油加氢精制装置采用中国石化抚顺石油化工研究院开发的FH-40C加氢精制催化剂,催化剂床层采用分级装填技术,器内湿法预硫化方法。根据生产实际需要,将原FH-98型催化剂更换为FH-40C型催化剂,以提升产品品质,并对新剂是否能够生产合格的催化重整预加氢原料进行了试验,同时对不同产品方案下的产品性质、装置能耗等进行了对比分析。近三年的运行结果表明,FH-40C催化剂具有优异的加氢脱硫和加氢脱氮活性,在工业应用过程中可灵活选择产品加工方案,焦化汽油经过不同深度加氢精制后,能稳定生产满足蒸汽裂解制乙烯原料或催化重整预加氢原料要求的产品。  相似文献   

13.
针对加氢脱硫技术(HDS)存在的操作条件苛刻、装置投资及操作费用高等缺点,无锡蓝星石化公司与西南石油大学合作,采用后者研制的催化剂SW-Ⅰ对无锡蓝星石化公司FCC汽油进行烷基化脱硫中试试验研究。在SW-Ⅰ催化剂用量0.61%、反应温度60 ℃、压力0.5~0.8 MPa、空速3.77 h-1的条件下,100 mL催化剂SW-Ⅰ可处理原料油27.5 L,烷基化脱硫汽油的硫含量为191 μg/g、收率为87.90%,。将烷基化脱硫汽油与直馏汽油、C9芳烃以及MTBE按质量比67:15:10:8调合生产车用汽油,调合汽油RON为93.4,密度为0.721 5 g/cm3,硫含量为142 μg/g,硫含量符合国Ⅲ标准。与HDS相比,FCC汽油烷基化脱硫技术工艺流程简单、操作条件缓和、不损耗辛烷值、装置投资及操作费用低、能耗低,具有一定的工业应用前景。  相似文献   

14.
直馏汽油掺碳四非临氢改质技术的工业应用   总被引:3,自引:1,他引:2  
介绍了石油化工科学研究院开发的直馏汽油非临氢改质工艺在沈阳石蜡化工有限公司70kt/a直馏汽油非临氢改质装置上的工业应用情况。结果表明,该技术性能可靠,各项工艺指标均达到或超过设计要求。直馏汽油掺碳四馏分原料改质后,可以增加汽油产率,汽油RON提高38个单位以上,烯烃含量小于3%,成为品质优良的汽油降烯烃调合组分;改质后液化气的烷烃含量达95%以上,烯烃含量小于5%,经脱硫后可作为车用液化气,经济效益显著。  相似文献   

15.
研究了[bmim]Cl-AlCl_3离子液体催化体系的FCC汽油降烯烃性能。结果表明:在40℃、20 min和V (催化剂):V(汽油)=1:10时,FCC汽油烯烃体积分数下降14.70%,辛烷值基本不变,处理后的汽油烯烃体积分数完全符合我国新配方汽油的使用标准。离子液体可重复使用。离子液体能催化FCC汽油中的低碳烯烃与异构烷烃和芳烃的烷基化以及低碳烯烃自身的二聚反应,从而达到降烯烃的目的。实验表明,FCC汽油中的含氮组分是导致离子液体催化剂失活的主要原因,而含硫组分的影响不大。  相似文献   

16.
中国石化石油化工科学研究院开发了加氢蜡油催化裂化提高汽油辛烷值催化剂HMIP-1,该催化剂在中国石化天津分公司催化裂化装置上工业应用的结果表明:采用HMIP-1型催化剂,在不降低处理量、生焦基本不变的前提下,提升管第一反应器出口温度可提高4 ℃,催化裂化汽油收率提高1.40百分点;催化裂化汽油辛烷值(RON)提高到89.5,提高0.6个单位。HMIP-1型催化剂可有效提高以加氢蜡油为原料的催化裂化汽油的收率和辛烷值。  相似文献   

17.
催化裂化增产汽油的分析与探讨   总被引:2,自引:0,他引:2  
增产汽油应从占汽油池70%以上的催化裂化工艺技术着手,通过优化加工流程提供具有较好裂化性能的催化裂化原料,选择对大分子裂化能力强的催化剂,维持较高的平衡剂活性,优化反应-再生系统的工艺操作参数,强化催化裂化反应,提高单程转化率;采用催化裂化柴油馏分回炼技术,尤其是富含链状烃和单环芳烃的柴油轻馏分有助于增产高辛烷值汽油;严格控制分馏和吸收稳定系统的操作条件,用足汽油干点和蒸气压质量指标等措施,可有效增加催化裂化汽油产率。  相似文献   

18.
考察了汽油清净剂对储备汽油清净性的影响及其作用机理。研究结果表明,储备汽油清净性能差,生成大量的沉积物,需要加入清净剂。储备汽油沉积物形貌和元素组成与新鲜汽油沉积物不同,前者呈颗粒状,氢碳原子比小。清净剂加入储备汽油中,能有效降低沉积物的量,改善汽油清净性,其作用机理与新鲜汽油基本一致,因此对于储备汽油而言,无需开发新类型清净剂,只需选用清净分散能力强的清净剂。  相似文献   

19.
中国石油化工股份有限公司石油化工科学研究研制的第二代DOCO型降烯烃催化剂,于2002年在中国石油天然气股份有限公司前郭石化分公司0.8Mt/a重油催化裂化装置上进行了工业试验。该催化剂采用高硅铝比的ZRP-5超稳分子筛为主活性组元,并引用了新型基质材料。试验原料为吉林原油常压渣油。试验结果表明,与DOCP型催化剂相比,汽油烯烃体积分数可降低11个百分点,采用该催化剂可在催化裂化装置上直接生产出低烯烃含量的新标准汽油,汽油烯烃体积分数小于35%。研究法辛烷值大于90,轻质产品收率基本不变。该催化剂应采用大剂油比操作和终止剂技术,以创造适宜的二次反应环境。  相似文献   

20.
合成了一种磷钼杂多酸离子液体[HMIM]3PMo12O40催化剂,将其用于FCC汽油催化氧化脱硫过程,考察了催化氧化时间、H2O2用量、催化剂用量及反应温度对模拟汽油脱硫率的影响;在最佳工艺条件下,考察了该催化剂对FCC汽油的脱硫效果。结果表明:当催化氧化时间为90 min、反应温度为60 ℃、n(催化剂)/n(S)=0.04、n(H2O2)/n(S)=4时,模拟汽油脱硫率可达91.6%;FCC汽油的脱硫率为87.8%,且催化剂有较好的循环使用性能,前4次循环使用的平均脱硫率为84.9%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号