首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inverse scattering theory for optical coherence tomography (OCT) is developed. The results are used to produce algorithms to resolve three-dimensional object structure, taking into account the finite beam width, diffraction, and defocusing effects. The resolution normally achieved only in the focal plane of the OCT system is shown to be available for all illuminated depths in the object without moving the focal plane. Spatially invariant resolution is verified with numerical simulations and indicates an improvement of the high-resolution cross-sectional imaging capabilities of OCT.  相似文献   

2.
Rosa CC  Rogers J  Pedro J  Rosen R  Podoleanu A 《Applied optics》2007,46(10):1795-1808
A versatile time-domain optical coherence tomography system is presented that can generate cross-sectional images by using either transverse priority or depth priority scanning. This is made possible by using a transmissive scanning delay line compatible with balance detection operating at a speed similar to that of the transverse scanner used to scan the beam across the target. In vivo images from the retina are generated and shown using the same system switched to either transverse or depth priority scanning regime, by using the scanning delay line either in slow or fast scanning modes, respectively. A comparative analysis of different scanning regimes depending on image size to fit different areas to be imaged is presented. Safety thresholds due to the different continuous irradiation time per transverse pixel in different scanning regimes are also considered. We present the maximum exposure level for a variety of scanning procedures, employing either A scanning (depth priority) or T scanning (transverse priority) when generating cross-sectional images, en face images, or collecting 3D volumes.  相似文献   

3.
Full-field optical coherence tomography (OCT) is able to image an entire en face plane of scatterers simultaneously, but typically the focus is scanned through the volume to acquire three-dimensional structure. By solving the inverse scattering problem for full-field OCT, we show it is possible to computationally reconstruct a three-dimensional volume while the focus is fixed at one plane inside the sample. While a low-numerical-aperture (NA) OCT system can tolerate defocus because the depth of field is large, for high NA it is critical to correct for defocus. By deriving a solution to the inverse scattering problem for full-field OCT, we propose and simulate an algorithm that recovers object structure both inside and outside the depth of field, so that even for high NA the focus can be fixed at a particular plane within the sample without compromising resolution away from the focal plane.  相似文献   

4.
Optical coherence tomography of luminal structures, such as for intravascular or gastrointestinal imaging, is performed by using a fiber-optic catheter as a beam-delivery probe. The interrogating beam is scanned angularly by rotating the fiber around a fixed central axis. Because the beam is focused only at a fixed distance from the center of the fiber, only scatterers near this distance are resolved. We present a solution of the inverse scattering problem that provides an estimate of the susceptibility of the sample for an angularly scanned Gaussian beam focused at a fixed distance from the origin. This solution provides quantitatively meaningful reconstructions while also extending the volume of the sample that is resolvable by the instrument.  相似文献   

5.
Polarization-sensitive optical coherence tomography (PSOCT) is applied to determine the depth-resolved polarization state of light backreflected from the eye. The birefringence of the retinal nerve fiber layer (RNFL) was observed and measured from PSOCT images recorded postmortem in a Rhesus monkey. An image-processing algorithm was developed to identify birefringent regions in acquired PSOCT retinal images and automatically determine the thickness of the RNFL. Values of the RNFL thickness determined from histology and PSOCT were compared. PSOCT may provide a new method to determine RNFL thickness and birefringence for glaucoma diagnostics.  相似文献   

6.
Edney PA  Walsh JT 《Applied optics》2001,40(34):6381-6388
Acousto-optic interactions allow the measurement of nonoptical material properties with high-resolution optical methods. We modulated a sample with ultrasound while simultaneously imaging with a traditional optical coherence tomography (OCT) system. The measured acousto-optic signal then depends on the mechanical response of the tissue to the applied modulation. The acquired acoustically enhanced OCT signals are consistent with established acousto-optic theory and provide enhanced contrast to OCT images.  相似文献   

7.
Functional optical coherence tomography (OCT) of stimulus-evoked intrinsic optical signal (IOS) promises to be a new methodology for high-resolution mapping of retinal neural dysfunctions. However, its practical applications for non-invasive examination of retinal function have been hindered by the low signal-to-noise ratio (SNR) and small magnitude of IOSs. Split spectrum amplitude-decorrelation has been demonstrated to improve the image quality of OCT angiography. In this study, we exploited split spectrum strategy to improve the sensitivity of IOS recording. The full OCT spectrum was split into multiple spectral bands and IOSs from each sub-band were calculated separately and then combined to generate a single IOS image sequence. The algorithm was tested on in vivo images of frog retinas. It significantly improved both IOS magnitude and SNR, which are essential for practical applications of functional IOS imaging.  相似文献   

8.
We present a comprehensive study of multiple-scattering effects in wide-field optical coherence tomography (OCT) realized with spatially coherent illumination. Imaging a sample made of a cleaved mirror embedded in an aqueous suspension of microspheres revealed that, despite temporal coherence gating, multiple scattering can induce significant coherent optical cross talk. The latter is a serious limitation to the method, since it prevents shot-noise-limited detection and diffraction-limited imaging in scattering samples. We investigate the dependence of cross talk on important system design parameters, as well as on some relevant sample properties. The agreement between theoretical and experimental results for the wide range of parameters investigated was very good, in both the lateral and the axial dimensions. This further confirms the validity of the model developed in our companion paper [J. Opt. Soc. Am. A 22, 1369-1379 (2005)].  相似文献   

9.
We describe a new semiautomatic image processing method for detecting the cartilage boundaries in optical coherence tomography (OCT). In particular, we focus on rabbit cartilage since this is an important animal model for testing both chondroprotective agents and cartilage repair techniques. The novel boundary-detection system presented here consists of (1) an adaptive filtering technique for image enhancement and speckle reduction, (2) edge detection, and (3) edge linking by graph searching. The procedure requires several steps and can be automated. The quantitative measurements of cartilage thickness on OCT images correlated well with measurements from histology.  相似文献   

10.
We present a new model of optical coherence tomography (OCT) taking into account multiple scattering. A theoretical analysis and experimental investigation reveals that in OCT, despite multiple scattering, the field backscattered from the sample is generally spatially coherent and that the resulting interference signal with the reference field is stationary relative to measurement time. On the basis of this result, we model an OCT signal as a sum of spatially coherent fields with random-phase arguments--constant during measurement time--caused by multiple scattering. We calculate the mean of such a random signal from classical results of statistical optics and a Monte Carlo simulation. OCT signals predicted by our model are in very good agreement with a depth scan measurement of a sample consisting of a mirror covered with an aqueous suspension of microspheres. We discuss other comprehensive OCT models based on the extended Huygens-Fresnel principle, which rest on the assumption of partially coherent interfering fields.  相似文献   

11.
《Optoelectronics, IET》2008,2(5):188-194
Scaffolds play an important role in the generation of functional tissues using tissue-engineering techniques. To generate highly organised tissue, scaffolds must have specific internal and external architectures. Here, optical coherence tomography (OCT) is exploited to characterise the architectures of various scaffolds, in particular scaffolds which have been fabricated to support the formation of uniaxially orientated collagen bundle for use in tendon tissue engineering. In parallel, a polarisation-sensitive OCT (PSOCT) has been built to assess the collagen fibre organisation in human tendon and monitor the growth of engineering tendon constructs online and non-destructively. The impact of mechanical stimuli on the modulation of tendon tissue formation and organisation was also assessed. It is shown that conventional OCT is capable of characterising scaffold architecture and the pore size, porosity or microchannel dimension can be determined quantitatively and qualitatively. PSOCT generated birefringence images of human tendon and demonstrated that low birefringence images, associated with fewer microstructural variations, correlated to the presence of scar tissue or degenerated tissue; whereas the tissue-engineered tendon exhibited lower degree of birefringence.  相似文献   

12.
Hauger C  Wörz M  Hellmuth T 《Applied optics》2003,42(19):3896-3902
We describe a new interferometer setup for optical coherence tomography (OCT). The interferometer is based on a fiber arrangement similar to Young's two-pinhole interference experiment with spatial coherent and temporal incoherent light. Depth gating is achieved detection of the interference signal on a linear CCD array. Therefore no reference optical delay scanning is needed. The interference signal, the modulation of the signal, the axial resolution, and the depth range are derived theoretically and compared with experiments. The dynamic range of the setup is compared with OCT sensors in the time domain. To our knowledge, the first images of porcine brain and heart tissue and human skin are presented.  相似文献   

13.
Ultrahigh-resolution full-field optical coherence tomography   总被引:1,自引:0,他引:1  
We have developed a white-light interference microscope for ultrahigh-resolution full-field optical coherence tomography of biological media. The experimental setup is based on a Linnik-type interferometer illuminated by a tungsten halogen lamp. En face tomographic images are calculated by a combination of interferometric images recorded by a high-speed CCD camera. Spatial resolution of 1.8 microm x 0.9 microm (transverse x axial) is achieved owing to the extremely short coherence length of the source, the compensation of dispersion mismatch in the interferometer arms, and the use of relatively high-numerical-aperture microscope objectives. A shot-noise-limited detection sensitivity of 90 dB is obtained in an acquisition time per image of 4 s. Subcellular-level images of plant, animal, and human tissues are presented.  相似文献   

14.
We present the design and procedures for implementing a parallel optical coherence tomography (POCT) imaging system that can be adapted to an endoscopic format. The POCT system consists of a single mode fiber (SMF) array with multiple reduced diameter (15 microm) SMFs in the sample arm with 15 microm center spacing between fibers. The size of the array determines the size of the transverse imaging field. Electronic scanning eliminates the need for mechanically scanning in the lateral direction. Experimental image data obtained with this system show the capability for parallel axial scan acquisition with lateral resolution comparable to mechanically scanned optical coherence tomography systems.  相似文献   

15.
We show that the multiple-scatter rejection provided by optical coherence microscopy (low-coherence interferometry) can be incomplete in optically turbid media and that multiple scattering manifests itself in two distinct ways. Multiple small-angle scattering results in an effective probe field that is stronger than expected from a first-order beam extinction model, but that contains a distorted wave front that enhances the apparent reflectance of small structures relative to those that are larger than the unscattered incident beam. Multiple wide-angle scattering produces a broad diffuse haze that reduces the contrast of subsequent features.  相似文献   

16.
Graber HL  Xu Y  Barbour RL 《Applied optics》2007,46(10):1705-1716
We have extended our investigation on the use of a linear algorithm for enhancing the accuracy of diffuse optical tomography (DOT) images, to include spatial maps of the diffusion coefficient. The results show that the corrected images are markedly improved in terms of estimated size, spatial resolution, two-object resolving power, and quantitative accuracy. These image-enhancing effects are significant at expected levels of diffusion-coefficient contrast in tissue and noise levels typical of experimental DOT data. Overall, the types and magnitudes of image-enhancing effects obtained here are qualitatively similar to those seen in previous studies on mu(a) perturbations. The implications for practical implementations of DOT time-series imaging are discussed.  相似文献   

17.
Traditional analysis of spectroscopic optical coherence tomography (SOCT) signals is limited by an uncertainty relationship between time (depth) and frequency (wavelength). The use of a bilinear time-frequency distribution for analysis, such as those that compose Cohen's class of functions, may provide a way to avoid this limitation. Here we present the relationship between traditional SOCT analysis and the relevant Cohen class functions: the Wigner and Choi-Williams distributions. While cross terms that arise in these bilinear time-frequency distributions have been viewed as an artifact, here we identify these terms with temporal coherence, which contains significant information about the signal through phase relationships. The utility of time-frequency distributions is illustrated through analysis of calculated signals.  相似文献   

18.
Su J  Tomov IV  Jiang Y  Chen Z 《Applied optics》2007,46(10):1770-1775
We used continuum generated in an 8.5 cm long fiber by a femtosecond Yb fiber laser to improve threefold the axial resolution of frequency domain second-harmonic optical coherence tomography (SH-OCT) to 12 microm. The acquisition time was shortened by more than 2 orders of magnitude compared to the time-domain SH-OCT. The system was applied to image biological tissue of fish scales, pig leg tendon, and rabbit eye sclera. Highly organized collagen fibrils can be visualized in the recorded images. Polarization dependence on the SH has been used to obtain polarization resolved images.  相似文献   

19.
The two previously reported calculations of the amplitude distribution of speckles in optical coherence tomography, each based on a different mathematical formulation, yield different results. We show that a modification of an initial assumption in one of the formulations leads to equivalent results.  相似文献   

20.
提出了一种高速光学相干层析(OCT)成像技术方案。利用柱面镜的成像特性将传统OCT的点聚焦成像模式改变为线聚焦成像模式,从而降低二维OCT图像的扫描维数,达到提高成像速度的目的。利用ZEMAX光学软件对系统进行光线追迹获得光束经过柱面镜后的聚焦情况。随后采用635nm的激光光源和柱面镜构建了实验系统,实验结果很好地验证了光线追迹仿真结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号