首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
通过柠檬酸硝酸盐燃烧法制备中温固体氧化物燃料电池(IT-SOFCs)双钙钛矿阴极材料Sm Ba Co Fe O_(5+δ)(SBCFO)粉体,并系统研究了该材料在中温段的晶体结构特征、热膨胀性能、离子-电子传输特性、电化学催化活性以及电池功率特性。结果表明:SBCFO在室温下为P mmm正交结构,在300℃时材料转变为P 4/mmm四方结构。SBCFO的热膨胀系数在25~200℃和200~900℃范围内分别为15.7×10~(-6 )K~(-1)和19.6×10~(-6 )K~(-1)。SBCFO阴极在600~800℃温度范围内电导率超过100 S/cm。在700,750,800和850℃时,空气(50 m L/min)气氛中,SBCFO/La_(0.8)S_(r0.2)Ga_(0.8)Mg_(0.2)O_3(LSGM)/SBCFO对称电池极化电阻分为0.210,0.100,0.054和0.032Ω?cm~2。SBFCO双钙钛矿阴极氧还原反应的限速步骤是表面吸附氧分子解离成氧原子的过程。以SBCFO为阴极组装电解质支撑型单电池Ni-Gd_(0.1)Ce_(0.9)O_(2-δ)/La_(0.4)Ce_(0.6)O_2/LSGM(300μm)/SBCFO,800℃时,其最大功率密度达到831 m W/cm~2。  相似文献   

2.
郑颖平  查燕  高文君 《化工时刊》2007,21(11):25-27
以硝酸盐为前驱体合成了具有钙钛矿结构的中温固体电解质La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM)。用XRD和SEM分析了样品钙钛矿相的形成过程和显微结构,用直流四电极法测试了电解质的氧离子电导率。研究结果表明:经1 450℃煅烧6 h后得到LSGM单相结构,800℃时的电导率为6.8×10-2S.cm-1,高于同温下钇稳定氧化锆(YSZ)样品的电导率,表明LSGM更适合做中温固体氧化物燃料电池(SOFC)的电解质材料。  相似文献   

3.
研究了中温固体氧化物燃料电池的新型层状钙钛矿Y0.8Ca0.2BaCo2O5+δ(YCBC)阴极材料。采用柠檬酸–硝酸盐自蔓延燃烧法合成了YCBC以及YBaCo2O5+δ(YBC)粉体。X射线衍射结果表明:YCBC粉体在950℃空气中煅烧3 h能够很好地成相,而YBC粉体需要1 100℃。电导率测试结果表明:在整个测试温度350~800℃范围内,YCBC的电导率(435~506 S/cm)明显比YBC的电导率(205~323 S/cm)高。使用电化学阻抗谱技术测试了对称电池YCBC/SDC/YCBC和阳极支撑的单电池YCBC/SDC/Ni-SDC的电化学性能。以H2为燃料气(含体积分数3%水蒸气),空气为氧化剂,650℃时单电池YCBC/SDC/Ni-SDC的最大输出功率为351 mW/cm2。目前研究表明YCBC是具有潜力的中温固体氧化物燃料电池阴极材料。  相似文献   

4.
研究了固体氧化物燃料电池Sr2Fe Mo0.6Mg0.25Al0.15O6 (SFMMA)双钙钛矿阳极的晶体缺陷结构、热膨胀性能、电荷传输特性、氧化还原稳定性以及电化学性能。结果表明:SFMMA室温下为I 4/m四方结构,400℃时材料转变为F m 3 m立方结构。SFMMA材料的实际晶体结构式为Sr2(Fe0.75Mg0.25)(Mo0.6Fe0.25Al0.15)O6-δ,材料晶格中含有大量反位缺陷FeB’以及—FeB—O—FeB’—键,有利于氧空位的形成及氧离子的迁移扩散。SFMMA的热膨胀系数在25~400℃和400~900℃范围内分别为13.0×10–6K–1和17.6×10–6K–1,在氢气气氛下600~900℃温度范围内电导率超过35 S·cm–1,并且具有较快的氧表面交换特性以及非常优异的氧化还原循环结构稳定性。在900,850,800℃和750℃时,湿润H2(3%H2O,50 m L/min)气氛中,SFMMA/La0.4Ce0.6O2(LDC)/La0.8Sr0.2Ga0.8Mg0.2O3(LSGM)/LDC/SFMMA对称半电池面比电阻分别为0.096,0.142,0.239Ω·cm2和0.447Ω·cm2。以SFMMA为阳极组装电解质支撑型单电池SFMMA/LDC/LSGM (300μm)/Pr Ba0.5Sr0.5Co1.5Fe0.5O5+δ,850℃时电池最大功率密度可达886 m W·cm–2。  相似文献   

5.
通过柠檬酸络合法合成了La_xSr_(2–x)MgMoO_(6–δ)(LSMM)阳极材料。利用X射线衍射和扫描电子显微镜分析样品的物相结构、微观形貌及与电解质的化学相容性,采用四端引线法测试材料的电导率,利用电化学工作站测试其阳极阻抗特性,并以La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.2)O_3(LSGM)为电解质、PrBaCo_2O_(5+δ)为阴极制备了单电池,测试功率密度。结果表明:空气中La的掺杂量小于0.2(摩尔分数)时,还原后La的掺杂量可以达到0.6,La的掺杂导致晶胞体积增大。La掺杂的Sr_2MgMoO_6(SMMO)与电解质LSGM、Ce_(0.8)Gd_(0.2)O_(2–δ)(GDC)在1 250℃煅烧10 h,均没有杂质相生成,具有良好的化学相容性。La掺杂显著提高了SMMO的电导率,800℃、5%H2/Ar气氛中,La_(0.6)Sr_(1.4)MgMoO_(6–δ)的电导率为40 S/cm。La的掺杂降低了阳极材料的极化电阻,提高了电池功率密度。  相似文献   

6.
研究了层状钙钛矿钴氧化物YBaCo2O5+δ阴极材料的微观结构和热膨胀及电性能.结果表明:YBaCo2O5+δ极材料具有与Ce0.8Gd0.2O2-δ固体电解质相匹配的热膨胀性能,显示出良好的化学和结构稳定性.YBaCo2O5+δ在高温下表现为金属导电特性,100~800℃温度范围内的电导率σ=153~35 S/cm.通过扫描电子显微镜和电子能谱手段,研究了YBaCo2O5+δ/Ce0.8Gd0.2O2-δ复合阴极中离子-电子混合导电相的微观结构.  相似文献   

7.
用柠檬酸-硝酸盐合成La0.8Sr0.2Ga0.85Mg0.15O3-δ及其性能   总被引:5,自引:3,他引:5  
用柠檬酸-硝酸盐水系溶液为前驱体合成了具有钙钛矿结构的中温电解质La_(0.8)Sr_(0.2)Ga_(0.85)Mg_(0.15)O_(3-s-δ)(LSGM)。用DTA-TGA和X射线衍射仪分析了LSGM材料中钙钛矿相的形成过程,用热膨胀仪和交流复阻抗谱研究了样品的烧结、热膨胀和电学性能。研究结果表明:用柠檬酸-硝酸盐溶液制备LSGM所得到的非晶产物在800℃时开始形成钙钛矿相,1400℃烧结6 h已经完全转变成稳定钙钛矿相,LSGM样品在1450℃烧结6 h,相对密度已经达到98%。1450℃烧结6 h的LSGM样品阻抗谱研究表明:与固相法制备的LSGM相比,用柠檬酸-硝酸盐溶液合成的LSGM晶界电阻和杂相电阻都很小,不影响样品的电导。表明用湿化学法合成LSGM有利于提高纯度,改善导电性能。850℃时样品的电导率为6.0×10~(-2)S/cm,900℃时单电池的最大输出功率密度为12.2 mW/cm~2,短路电流密度达刭55.2 mA/cm~2。  相似文献   

8.
用EDTA-硝酸盐法合成了中温固体氧化物燃料电池的电解质La0.8Sr0.2Ga0.85Mg0.15O3-δ(LSGM).BET法测定了前驱粉体的比表面积.XRD和DTA-TG曲线综合分析了合成过程中的化学反应.热膨胀仪和交流阻抗谱测定了其烧结性能和电化学性能.DTA-TG结果表明粉体在800℃左右开始形成钙钛矿结构,1200℃烧结就可以形成具有完整的钙钛矿结构LSGM样品;XRD表明用该方法合成的LSGM具有纯度高、杂相少等优点;烧结收缩率曲线显示烧结温度比固相法合成低了200℃左右;交流阻抗谱结果计算得到LSGM样品在800℃的电导率为7.5 S/m.  相似文献   

9.
制备方法对Pr0.6Sr0.4FeO3-δ结构与性能的影响   总被引:1,自引:0,他引:1  
采用甘氨酸-硝酸盐、Pechini、柠檬酸-硝酸盐以及尿素-硝酸盐等4种不同的湿化学方法,制备了Pr0.6Sr0.4FeO3-δ复合氧化物粉体.用X射线衍射分析了材料中钙钛矿物相的形成过程及其与中温电解质的化学相容性.用扫描电镜研究了样品的微结构.结果表明:不同方法得到的素坯经1 000℃煅烧2 h即形成钙钛矿结构的固溶体.Pechini法制备的非晶产物煅烧后钙钛矿物相的纯度最高.素坯经1200℃煅烧2 h,所得陶瓷体的总气孔率均为43%~49%;体积密度以柠檬酸-硝酸盐法粉体的样品最高,甘氨酸-硝酸盐法最低.在室温到800℃的温度范围内,Pechini法制备的陶瓷体的热膨胀系数为12.15×10-6/K,与电解质Sm0.2Ce0.8O1.9(SDC)及La0.8Sr0.2Ga0.8Mg0.2O3-δ(LSGM)的数值一致.X射线衍射揭示产物与中温电解质SDC及LSGM具有良好的化学相容性.  相似文献   

10.
采用柠檬酸–硝酸盐自蔓延燃烧法分别合成了双钙钛矿结构的SmBaCo2O5+δ(SBCO)阴极粉体和萤石型Sm0.2Ce0.8O1.9(SDC)电解质粉体,按3:2的质量比混合上述粉体研磨后得到复合阴极。利用X射线衍射仪研究化学相容性,直流四端子法测量电导率,热膨胀仪测量热膨胀系数;构建阳极支撑型单电池(Ni-SDC|SDC|SBCO-SDC)并进行了性能测试,用扫描电子显微镜观察电池的断面微结构,交流阻抗谱记录界面极化。结果表明:SBCO与SDC在1 000℃无相互作用;450~800℃,复合阴极的电导率在369~234 S/cm之间;SDC的加入降低了复合阴极的热膨胀系数;单电池具有理想的微观结构,阳极|电解质|阴极各界面彼此接触良好,650℃时极化电阻仅为0.031.cm2;以H2为燃料气(含体积分数3%水蒸气),空气为氧化剂,650℃时电池的开路电压为0.77 V,输出功率最大值为640 mW/cm2。预示着SBCO-SDC是中温固体氧化物燃料电池有潜力的阴极材料。  相似文献   

11.
采用甘氨酸-硝酸盐、Pechini、柠檬酸-硝酸盐以及尿素-硝酸盐等4种不同的湿化学方法,制备了Pr0.6Sr0.4FeO3-δ复合氧化物粉体.用X射线衍射分析了材料中钙钛矿物相的形成过程及其与中温电解质的化学相容性.用扫描电镜研究了样品的微结构.结果表明不同方法得到的素坯经1 000℃煅烧2 h即形成钙钛矿结构的固溶体.Pechini法制备的非晶产物煅烧后钙钛矿物相的纯度最高.素坯经1200℃煅烧2 h,所得陶瓷体的总气孔率均为43%~49%;体积密度以柠檬酸-硝酸盐法粉体的样品最高,甘氨酸-硝酸盐法最低.在室温到800℃的温度范围内,Pechini法制备的陶瓷体的热膨胀系数为12.15×10-6/K,与电解质Sm0.2Ce0.8O1.9(SDC)及La0.8Sr0.2Ga0.8Mg0.2O3-δ(LSGM)的数值一致.X射线衍射揭示产物与中温电解质SDC及LSGM具有良好的化学相容性.  相似文献   

12.
采用尿素燃烧法制备La0.6Sr0.4Co0.2Fe0.8O3-δ(记作LSCF,下同)钙钛矿型阴极催化剂前体粉末,经800℃锻烧后具有典型的钙钛矿结构。在400~950℃温度范围内,催化剂具有较高的电导率,满足固体氧化物燃料电池阴极的要求。研究了以H2S为燃料气时,单体固体氧化物燃料电池(CoS-Mo2S)/BaCe0.9-xZrxY0.1O3/LSCF在不同温度下的电化学性能以及脱硫性能。结果表明:电池的最大电流密度、最大功率密度以及对H2S的脱除率均随温度的升高而增大;在反应温度为850℃,燃气流量为50 mL/min的条件下,电池的最大电流密度和最大功率密度分别为39.52 mA/cm2,6.38 mW/cm2;900℃时,H2S的脱除率达72%。  相似文献   

13.
分别采用凝胶浇注法和甘氨酸–硝酸盐法制备La0.6Sr0.4Co0.2Fe0.8O3–δ(LSCF)粉体与Sm0.2Ce0.8O1.9(SDC)粉体,随后制备出不同比例的LSCF–SDC复合阴极。用X射线衍射分析粉体的化学稳定性,用扫描电子显微镜观察复合阴极的微观结构,在500~800℃范围内测量其热膨胀系数和电导率。采用丝网印刷法将LSCF–SDC涂覆在SDC电解质片上,在1100℃烧结4h。用交流阻抗法在600~800℃范围内测量不同成分的LSCF–SDC复合阴极和SDC电解质的交流阻抗谱。结果表明:LSCF和SDC粉体具有良好的化学相容性,烧结体具有多孔结构,LSCF–SDC复合阴极与SDC电解质可形成良好的接触界面。SDC的加入在降低阴极材料的热膨胀系数的同时还保持了其本身较高的电导率,在中温范围内,电导率达到500S/cm以上。复合阴极的极化电阻随着SDC的含量增加而减小,当SDC含量为30%时,复合阴极的极化电阻最小,在700℃空气中测试得到的界面电阻为0.32Ω·cm2。  相似文献   

14.
采用溶胶–凝胶法制备了La0.8–xBaxSr0.2Co0.8Fe0.2O3–δ(LBSCF)阴极粉体。对LBSCF的晶体结构、材料表面的化学状态、烧结体的断面微结构及电导率进行了表征。用交流阻抗谱法在550~700℃范围测试了LBSCF-30%SDC(Sm0.2Ce0.8O1.9)复合阴极的电化学性能。结果表明:LBSCF粉体主晶相为六方晶系钙钛矿结构,存在少量的第二相。XPS结果显示,Ba2+掺杂不影响A位离子(La3+、Ba2+、Sr2+)的价态,但对B位离子的价态有不同的影响:x=0.10的样品中,钴离子以Co3+和Co4+混合价态存在,其余样品中以低氧化态(Co3+和Co2+混合价)或Co3+价存在;铁离子以高氧化态(Fe3+和Fe4+)存在。在500~700℃空气气氛中,LBSCF的电导率均超过700 S/cm,在同一温度下,电导率随着Ba2+掺杂量的增加而增大。x=0.20的样品在500℃时,电导率最大可达1.59×103 S/cm。随着Ba2+含量增加,极化电阻减小,x=0.20时,复合阴极LBSCF-30%SDC的极化电阻最小,700℃时的极化电阻为0.20?·cm2。  相似文献   

15.
王亚楠  黄容厦  周和平 《硅酸盐学报》2008,36(12):1730-1734
采用甘氨酸-硝酸盐法(the glycine-niwate process,GNP)合成了新型中温固体氧化物燃料电池(intermediate temperature solid oxide fuel cell,IT-SOFC)阴极材料Gd1-xSrxCoO3-δ(x=0~0.5),所合成的初始粉体在800℃下煅烧12h后均形成了钙钛矿结构的单相固溶体.对该体系材料的电导率、界面阻抗进行了系统的研究后发现,Gd0.8Sr0.2CoO3-δ的电导率在600℃时达到了559 S/cm,CJd0.8Sr0.2CoO3-δ与Ce0.8Gd0.2O1.9(GDC)在600℃和700℃ 的界面阻抗分别为0.34 Ω·cm2和0.11 Ω·cm2,活化能为仪98.4 kJ/mol,预示其可以作为IT-SOFC较为理想的阴极备选材料.此外,通过调整Gd0.8Sr0.2CoO3-δ与GDC的比例可以制备出热膨胀系数与GDC电解质匹配、性能良好的Gd0.8Sr0.2CoO3-δ、GDC复合阴极材料.  相似文献   

16.
研究了中温固体氧化物燃料电池的新型层状钙钛矿Y0.8Ca0.2BaCo2O5+δ(YCBC)阴极材料。采用柠檬酸-硝酸盐自蔓延燃烧法合成了YCBC以及YBaCo2O5+δ(YBC)粉体。X射线衍射结果表明:YCBC粉体在950℃空气中煅烧3 h能够很好地成相,而YBC粉体需要1100℃。电导率测试结果表明:在整个测试温度350~800℃范围内,YCBC的电导率(435~506 S/cm)明显比YBC的电导率(205~323 S/cm)高。使用电化学阻抗谱技术测试了对称电池YCBC/SDC/YCBC和阳极支撑的单电池YCBC/SDC/Ni-SDC的电化学性能。以H2为燃料气(含体积分数3%水蒸气),空气为氧化剂,650℃时单电池YCBC/SDC/Ni-SDC的最大输出功率为351 mW/cm2。目前研究表明YCBC是具有潜力的中温固体氧化物燃料电池阴极材料。  相似文献   

17.
采用高温固相反应法,在空气气氛中制备了纯LaAlO3和Ca^2+–Cr^3+共掺杂LaAlO3陶瓷材料,对其在近红外的发射率以及热导率进行了研究比较。结果表明:20%Ca^2+(摩尔分数)和20%Cr^3+掺杂后的La0.8Ca0.2Al0.8Cr0.2O3在0.76~2.50μm的红外发射率达0.92,比纯LaAlO3提高了300%;Ca^2+和Cr^3+的掺杂降低了陶瓷材料的热导率,在1200℃时LaAlO3和La0.8Ca0.2Al0.8Cr0.2O3的热导率最低,La0.8Ca0.2Al0.8Cr0.2O3的热导率最低值为2.602 W·m^–1·K^–1,较纯LaAlO3降低了38%。  相似文献   

18.
采用柠檬酸-硝酸盐燃烧法制备PrBaFe_2O_(5+δ)(PBFO)和PrBaFe_(1.6)Ni_(0.4)O_(5+δ)(PBFNO)电极材料,用高温固相法制备La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3–δ)(LSGM)电解质。以LSGM为电解质,PBFNO及PBFNO-SDC分别为对称电极制备单电池。利用X射线衍射法研究材料的物相结构,交流阻抗法记录界面极化行为,扫描电子显微镜观察电池的断面微结构,用自组装的测试系统评价电池输出性能。结果表明:合成的PBFO和PBFNO粉体呈现单一的钙钛矿结构;Ni掺杂能够明显改善空气气氛下的界面极化行为,800℃时电极–电解质的界面极化阻抗由1.94?·cm~2降低到0.39?·cm~2。通过PBFNO与SDC复合能够明显增大电极的三相反应界面,提高电池输出性能,单电池在800℃时的最大功率输出密度从332mW/cm~2增大到372mW/cm~2。PBFNO-SDC复合电极是潜在的对称固体氧化物燃料电池电极材料。  相似文献   

19.
以金属硝酸盐为原料,柠檬酸盐法合成了用于中温固体氧化物燃料电池阴极材料La0.7Sr0.3-xCaxC0.9Fe0.1O3-δ(LSC-CF,x=0.05、0.10、0.15、0.20)的前驱体,TG-DSC、XRD和SEM研究了LSCCF的形成过程、晶体结构、粉体形貌、催化性能以及与电解质的化学相容性,并在空气气氛下用直流四极探针法测试经1 200℃烧结3 h后LSCCF样品从100℃到800℃的电导率.实验结果表明800℃处理3 h后的LSCCF前驱体可以形成粒度小于20μm钙钛矿结构的粉体,LSCCF样品的电导率随着Ca2+含量的减少而变大,且在500~800℃内均大于500 S/cm.LSCCF粉料可使碳粉的着火点降低14℃并加剧了碳粉的反应.LSCCF阴极与电解质Ce0.8Sm0.2O2具有好的化学相容性.  相似文献   

20.
王永昌  田野 《现代化工》2014,34(10):80-83,85
采用机械混合法合成了Sr2Fe1.5Mo0.5O6(SFM)和Sm0.2Ce0.8O1.9(SDC)质量比为7∶3的SFM/SDC复合材料。用X射线衍射(XRD)、扫描电镜(SEM)、H2-TPR、EIS等表征手段对其进行了表征,并以SFM/SDC|La0.8Sr0.2Ga0.83Mg0.17O3(LSGM)|Ba0.5Sr0.5Co0.8Fe0.2O3(BSCF)为单电池片进行电化学测试,对其性能进行评价。结果表明,复合材料取得了较好的放电性能,即以氢气为燃料气,850、800、750℃时分别取得了630.6、548.4、426 mW/cm2最大功率密度;以甲醇为燃料,850、800、750℃时分别取得了551.6、426.8、335.3 mW/cm2最大功率密度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号