首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《硅酸盐学报》2021,49(8):1683-1690
观察了不同MgO掺量的补偿收缩水泥浆在高温高压环境中的自由膨胀率,并结合显微形貌、浆体孔隙率等微观测试手段,分析了高温高压环境中MgO膨胀剂的作用机理。结果表明:掺加适量适当活性MgO膨胀剂,可以在对浆体强度影响不大的前提下有效补偿油井水泥浆在高温高压环境中的收缩;在150℃、20 MPa下,宜使用低活性的S型MgO膨胀剂,掺量应控制在3%左右;在高温、高压环境中,Mg~(2+)的迁移速度更快,Mg(OH)_2晶体的生长范围更广,体积更大;除扩张微裂缝外,Mg(OH)_2晶体还与水泥水化产物雪硅钙石晶簇相互穿插,扩大水化产物间的距离,所产生的膨胀率远高于常温常压条件时的。  相似文献   

2.
张世华 《硅酸盐通报》2018,37(1):134-138
研究了掺轻烧MgO膨胀剂的水泥浆体在不同养护条件下的变形性能,并采用X射线衍射仪、同步热分析以及背散射扫描电镜分析了掺MgO膨胀剂的水泥浆体中MgO的水化性能.结果表明:水泥浆体在不同的养护条件下养护,其相对湿度越大,收缩越小.在相同养护湿度条件下,水中预养护时间越长,其收缩越小.掺入MgO膨胀剂可以有效地降低低湿度条件下水泥浆体的收缩,其主要原因是轻烧MgO膨胀剂在缺水养护的低湿度条件下也能进行水化反应生成Mg(OH)2,从而降低了水泥浆体的收缩.  相似文献   

3.
采用QXRD法(Quantitative X-ray diffraction)对掺两种MgO膨胀剂水泥浆体中主要水化产物进行定量分析,以ZnO为内标物计算水化产物中非晶相的含量,并计算养护不同龄期水泥浆体中MgO的水化程度.结果 表明:40℃水养条件下,60 d时掺高活性MgO水泥浆体中MgO基本水化完全,而掺低活性MgO水泥浆体中MgO还有15%未水化;水泥浆体中MgO在早期具有较快的水化速率,后期水化速率变缓;相同龄期内,高活性MgO具有较快的水化速率,水化程度较高,但产生的膨胀量小于低活性MgO产生的膨胀量.  相似文献   

4.
本文探讨了轻烧镁砂(MgO)在不同水泥浆体中的膨胀特性,并借助于水化热仪、DTA、DSC、XRD、OM和EM对MgO在不同碱度NaOH溶液和水泥浆体中的水化及其产物Mg(OH)_2的结晶特性进行了较为详细的研究。在此基础上,提出了MgO在水泥中的膨胀机理,并据此建立了膨胀模型。研究结果表明,水泥中MgO的膨胀起因于Mg(OH)_2晶体的生成和长大。膨胀在很大程度上取决于生成的Mg(OH)_2晶体所占据的位置,其次还取决于Mg(OH)_2晶体的尺寸。浆体膨胀的直接推动力为极细小Mg(OH)_2晶体的吸水肿胀力和Mg(OH)_2晶体的结晶生长压力,但后者是主要的。粉煤灰和矿渣使浆体孔隙液碱度降低和浆体多孔是其对膨胀起抑制作用的主要原因。  相似文献   

5.
观察了不同水胶比内掺氧化镁膨胀剂补偿收缩砂浆在不同养护制度下(水中养护与密封养护)的自由膨胀率,并结合浆体孔隙率以及显微形貌观察,分析了在较长龄期中不同水胶比条件下的氧化镁膨胀剂的补偿收缩特性。采用XRD-Rietveld法测定不同水胶比条件下氧化镁膨胀剂的反应程度。结果表明:氧化镁膨胀剂发挥作用的最适宜水胶比为0.4,过高或过低都会降低补偿收缩砂浆的膨胀效果。密封条件会使其膨胀效应更早停止。低水胶比使浆体中缺水,因而MgO水化程度较低,同时使浆体结构致密,进而降低补偿收缩砂浆的膨胀量。高水胶比使得浆体内水分供给充足,MgO较快反应完全,进而使得补偿收缩砂浆的膨胀停止较早。  相似文献   

6.
通过XRD、SEM、水化热等方法研究了CaO类膨胀剂对碱矿渣水泥砂浆限制膨胀率的影响。结果表明:在6%~10%范围内,随着膨胀剂掺量的增加,碱矿渣水泥砂浆限制膨胀率增大、3 d抗压强度提高,但7 d以后抗压强度明显降低;内掺膨胀剂后水化放热加速峰提前,但放热速率及总放热量降低;XRD及SEM测试结果表明Ca(OH)_2是CaO类膨胀剂在碱矿渣水泥砂浆中的主要产物。尽管CaO类膨胀剂能够在碱矿渣胶凝体系中产生膨胀,但由于生成Ca(OH)_2速度与碱矿渣水化速度协调性不足,以至其不能发挥有效补偿收缩作用。  相似文献   

7.
掺新型生态膨胀剂水泥浆体的膨胀性能研究   总被引:1,自引:1,他引:0       下载免费PDF全文
以菱镁矿、白云石尾矿为原料,经适宜工艺,制备了新型生态膨胀剂,用以补偿大体积混凝土由于温度应力引起的收缩.研究掺入不同配比的膨胀剂和粉煤灰的水泥浆体,在不同水化龄期的膨胀性能以及在20℃或60℃水中膨胀率的变化过程和趋势.结果表明:膨胀材料煅烧温度为950 ~ 1050℃,保温1~1.5 h,自然冷却.在膨胀源含量一定的情况下,CaO含量越高,早期膨胀率越大,后期膨胀率越小;MgO含量越高,早期膨胀率越小,后期膨胀率越大.水化温度越高,在相同龄期下水泥浆体膨胀率越大.粉煤灰对MgO和CaO膨胀均具有明显的抑制作用,且随着粉煤灰掺量的增加,抑制作用加强.  相似文献   

8.
对掺入硅酸盐水泥中的C_4A_3$-CaSO_4-CaO体系(CCC膨胀剂,C_4A_3$为4CaO·3Al_2O_3·SO_3)的膨胀能力进行了研究。CaO、CaSO_4和CCC膨胀剂掺入到硅酸盐水泥浆体中均会产生膨胀。相同掺量下,CaO使得浆体在水化初期表现出剧烈而短暂的膨胀;CaSO_4使得浆体表现出轻微的膨胀;CCC膨胀剂使得浆体表现出适中而持续的膨胀。因此,掺入CCC膨胀剂的混凝土若长时间缓凝或延迟浇注会导致补偿收缩能力的损失。CCC膨胀剂可补偿混凝土的自收缩和干燥收缩,补偿能力随着膨胀剂掺量的增加而增大。相同掺量下,膨胀剂补偿收缩的能力,在早龄期随着水胶比的降低而减小,在后期随着水胶比的降低而增大,前者与自干燥导致的自收缩有关,后者与失水速率、毛细孔隙率和孔径分布有关。低水胶比混凝土中,当CCC膨胀剂的掺量较高时,在非饱和环境(失水过程)中也可表现出膨胀现象,这一点在工程应用时需要重视。  相似文献   

9.
为了研究活性MgO含量对碱式硫酸镁水泥强度及水化产物的影响,采用不同活性MgO含量的轻烧氧化镁制备水泥试样,进行抗压强度和抗折强度试验,并对水泥水化产物进行X射线衍射分析.结果表明,当改性剂掺量为活性MgO质量的1%时,活性MgO含量为60%的轻烧氧化镁制备的水泥试样在室温条件下养护28 d的抗压强度最高,水化产物的主要物相为5·1·7相和少量Mg(OH)2相;活性MgO含量为70%的轻烧氧化镁配制的水泥试样在同等条件下的抗压强度仅为活性MgO含量为60%时的60%,水化产物的主要物相为Mg(OH)2相和少量5·1·7相;活性MgO含量为43.2%的轻烧氧化镁制备的水泥试样强度最低,水化产物中以Mg(OH)2相为主,5·1·7相含量较少,以及剩余MgO相和未分解的MgCO3相.采用活性MgO含量为70%的轻烧氧化镁制备水泥试样时,增加改性剂掺量为活性MgO质量的2%时,试样各龄期强度有较大提高.  相似文献   

10.
在模拟井下环境中堵剂的结构形成与失效机理   总被引:3,自引:0,他引:3  
采用XRD,TG和SEM-EDS等研究了在模拟油井深处温度,压力条件下养护的G级油井水泥和YLD型堵漏剂浆体的水化产物和显微结构。在高温高压动态养护条件下,硬化水泥浆体内部存在大量CSH凝胶和Ca(OH2)晶体,而堵漏剂浆体的主要水化产物是CSH凝胶。在钢管-浆体界面,虽然水化程度更高,但CSH凝胶和Ca(OH)2晶体的量却很少;主要的水化产物是钙矾石和水化钙黄长石。界面处的显微结构也比浆体内部疏松。这表明在钢管-浆体界面处存在严重的溶蚀现象,导致水泥浆体很快损失胶凝性,这可能是水泥基堵剂失效的主要原因。堵漏剂浆体的溶蚀速率小于油井水泥浆体,其溶蚀表面可发生再水化过程,新生成的CSH凝胶具有修补受损界面的“自愈”作用,使堵漏剂浆体与钢管的粘结作用得以维持,从而延长堵漏剂的有效使用期。  相似文献   

11.
采用X射线衍射和扫描电镜,观测不同活性的氧化镁膨胀剂在不同水化龄期的产物,结合胶砂试件的限制膨胀率和强度测定结果,探究了不同活性的氧化镁膨胀剂的水化过程、膨胀特性和机理。结果表明:氧化镁的活性高,会减小生成的氢氧化镁晶体的体积,降低膨胀能力;水泥浆体中的碱性环境会抑制氧化镁膨胀剂的水化;高温养护有助于氢氧化镁的原位生成并使晶体致密,有助于膨胀发展。  相似文献   

12.
磷渣对水泥浆体水化性能和孔结构的影响   总被引:4,自引:0,他引:4  
通过对水泥浆体凝结性能、水化放热、力学性能和孔结构的测定,以及扫描电镜分析和差热-热重分析,研究了不同掺量磷渣对水泥浆体水化性能和微观结构的影响.结果表明:随着磷渣掺量的增加,浆体的凝结时间延长,水化热减少,早期抗压强度下降.但掺磷渣水泥浆体的后期抗压强度已接近或超过了纯水泥浆体的,磷渣掺量的增加对水泥浆体的后期抗压强度影响不显著.浆体中的Ca(OH)2量随龄期的延长而增加并随磷渣掺量的增加而降低.磷渣的活性效应和填充效应的发挥有效地改善了浆体水化后期的微观结构和孔结构,从而使浆体的力学性能有所提高.  相似文献   

13.
施惠生  郭蕾 《水泥》2005,(7):1-4
研究了钢渣对水泥强度及体积膨胀率的影响,采用SEM和EDXA分析了水化产物的形貌和微区化学成分,并用XRD对水化产物的矿物组成进行了分析研究。研究结果表明,钢渣的掺入会降低水泥净浆的早期抗压强度,但随钢渣水化的进行,掺钢渣的水泥浆体7d以后的强度增长较快,至120d时净浆抗压强度已与纯硅酸盐水泥相近。掺钢渣的水泥的体积膨胀率比纯硅酸盐水泥的体积膨胀率大,钢渣水泥的体积膨胀率主要取决于钢渣中的fCaO含量。掺钢渣水泥的主要水化产物组成和形貌与纯硅酸盐水泥无明显差别,所不同的是C-S-H凝胶中有较多的铁相。掺钢渣水泥的水化产物主要有C2SH(C)、AFt和Ca(OH)2。  相似文献   

14.
为研究不同膨胀源膨胀剂对复合胶凝体系膨胀性能及力学性能的影响,对单掺及复配多膨胀源膨胀剂补偿收缩复合胶凝体系的限制膨胀率及抗折、抗压强度等开展了试验研究.结果表明:氧化镁和氧化钙-硫铝酸钙(简称CA膨胀剂)两种膨胀剂在单掺情况下,CA膨胀剂膨胀量远大于氧化镁;CA膨胀剂的膨胀速率随掺量的减小而变缓,膨胀稳定期变长,而MgO膨胀剂的膨胀速率不受掺量的影响.复掺情况下,高活性MgO的限制膨胀率始终大于低活性MgO,且后期膨胀差距会随着MgO膨胀剂掺量的增加逐渐增大.当CA、MgO两种膨胀剂在质量比为1:1复配情况下,可采用叠加原理来较为准确地预测多膨胀源膨胀剂的膨胀经时发展规律以及膨胀量.对于强度而言,相同掺量下MgO膨胀剂对强度的影响小于CA膨胀剂.此外,复掺试验组限制膨胀与限制强度随龄期发展的协调性取决于该配合比中对膨胀能贡献更大的单类型膨胀剂的协调性.  相似文献   

15.
矿渣掺量对高水胶比水泥净浆水化产物及孔结构的影响   总被引:13,自引:2,他引:13  
测定了水胶比为0.5、矿渣质量分数为30%~80%的硬化水泥浆体中Ca(OH)2和非蒸发水量、孔径分布及孔隙率,以确定矿渣在高水胶比条件下的合理掺量。结果表明:即使在矿渣为大掺量情况下也能够改善浆体孔结构,而非蒸发水量、孔隙率随矿渣掺量的变化而变化,并存在使水化产物含量最多、浆体孔隙率最低的矿渣最佳掺量。在矿渣为大掺量情况下,Ca(OH)2含量可降低到极低。在比较纯水泥浆体和掺矿渣浆体的非蒸发水量和孔隙率的基础上提出了矿渣最大有益掺量,矿渣的掺量低于此值时,可使材料的性能得到改善。  相似文献   

16.
主要研究了稻草纤维碱处理液对碱式硫酸镁水泥凝结时间、流动度和强度的影响,同时利用XRD对水泥水化产物的物相组成进行了分析.研究结果显示,稻草纤维中的萃取物对水泥浆体有缓凝作用,并使得水泥浆体的流动度降低,早期强度也较低.由于纤维萃取物阻止了水泥浆体中MgO水解生成[Mg(OH)(H2O)x]+,抑制了早期水化产物中5Mg(OH)2· MgSO4· 7H2O(5· 1· 7)相的形成,因而早期强度发展缓慢.与溶剂为水的碱式硫酸镁水泥相比,碱处理过程中NaOH溶液加速了水泥的正常凝结,降低了水泥浆体的流动性,并对强度的发展有抑制作用.NaOH与MgSO4反应生成Mg(OH)2,使得水泥浆体中Mg2+减少,Mg(OH)2含量增加,导致水泥强度有所降低.  相似文献   

17.
以活性度为50 s的氧化镁膨胀剂样品M50为对象,探讨了水合法测试Mg O含量的合理性,并通过外掺粉状菱镁矿模拟氧化镁膨胀剂中所存在的部分未分解的Mg CO3,外掺分析纯Mg(OH)2模拟氧化镁膨胀剂受潮后水化生成的Mg(OH)_2,对比研究了化学分析法和水合法测试氧化镁膨胀剂中Mg O含量的差异性,以及两种测试方法测得氧化镁膨胀剂中Mg O含量与其膨胀性能的关系。结果表明:化学分析方法无法排除氧化镁膨胀剂中未分解Mg CO3和已受潮Mg(OH)2的影响,水合法可准确测试样品中能参与水化的Mg O的量,并能排除氧化镁膨胀剂中未分解Mg CO3和已受潮Mg(OH)_2的影响,与化学分析法相比,水合法测得的氧化镁膨胀剂中Mg O含量与其膨胀性能更相关。  相似文献   

18.
陈欣  郑建岚 《硅酸盐通报》2016,35(8):2530-2536
通过测定掺有再生粉体浆体的化学结合水含量、粉煤灰反应程度和Ca(OH)2含量,研究以不同比例单掺再生粉体以及复掺再生粉体和粉煤灰对水泥浆体水化特性的影响.试验结果表明,单掺再生粉体会降低浆体的化学结合水含量和Ca(OH)2含量,掺量越大,降幅越大.复掺再生粉体和粉煤灰时,浆体的化学结合水含量、粉煤灰反应程度和Ca(OH)2含量均比同掺量单掺粉煤灰浆体高,随着再生粉体复掺比例的增大,浆体的化学结合水含量先增大后减少,过多掺入再生粉体会对浆体的水化产生不利影响.基于试验结果,提出“再生粉体对水泥水化的综合效应系数β”,结合系数β,阐述了水化特性与宏观力学性能之间的关系,并给出单掺和复掺再生粉体的建议掺量.  相似文献   

19.
探讨了熟料中MgO含量对水泥收缩和水化的影响。通过X射线衍射和热重分析分别对不同氧化镁含量的熟料A矿晶型、方镁石相对含量和水泥水化产物进行了表征,并测试了3种养护条件下水泥的收缩特性。结果表明:熟料中的方镁石含量随着MgO含量增加而增加,方镁石早期水化速率较快,提高养护温度可以加速方镁石早期水化,方镁石水化膨胀能够降低水泥在干燥环境中的收缩,增加水浴环境中的膨胀。Mg(OH)_2以无定型、六方片状等形态存在于水化后的水泥中,且富集于Ca(OH)_2附近,并与Ca(OH)_2共同碳化生成CaMg(CO_3)_2等晶体。  相似文献   

20.
分别将掺量为水泥质量0.1% ~0.4%的再生纤维素纤维与水泥混合成型,探讨密封养护和标准养护环境下,再生纤维对水泥净浆抗裂性能、收缩性能、微观水化程度和孔结构的影响规律.结果表明:低水灰比、密封养护环境,掺加再生纤维能够更好的增强水泥浆体早期抗裂和自收缩性能;纤维掺量为水泥质量的0.2%时,水泥浆体的水化产物最多,累计孔体积最小,此时的抗裂能力和抗收缩能力最强;纤维掺量达到0.4%时,无论以何种方式养护,均不利于水泥浆体性能的改善.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号