首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用双反应器一段串联加氢流程,在第一反应器入口温度330℃、第二反应器入口温度270℃、反应氢分压13.0MPa、体积空速0.2h^-1和氢蜡体积比750的加氢条件下,得到接近食品级质量要求的微晶蜡产品。经过进一步改良优化后的微晶蜡,性能可与进口优质产品媲美。  相似文献   

2.
通过对载体进行助剂改性,有针对性地调变载体的表面性能,制备微晶蜡加氢精制催化剂。结果表明,改性助剂的加入降低载体的表面酸强度和总酸量,削弱了载体与活性组分的相互作用强度,提高活性金属的分散度。活性对比评价表明,催化剂的微晶蜡加氢活性高于同类催化剂。  相似文献   

3.
王士新 《工业催化》2015,23(1):50-53
介绍了使用中国石油化工股份有限公司抚顺石油化工研究院研制的FV-10型石蜡加氢催化剂进行高压加氢制取食品级微晶蜡、医药及食品级凡士林和润滑油基础油的试验情况。其中,微晶蜡和凡士林加氢试验采用高压一段串联工艺,轻脱沥青油脱蜡油加氢制取润滑油基础油试验采用高压一段加氢工艺。结果表明,在试验条件下,微晶蜡加氢产品质量符合GB22160-2008食品级微晶蜡标准;凡士林加氢产品质量分别符合GB1790-2003医药白凡士林标准和SH/T0767-2005食品级凡士林标准;轻脱沥青油脱蜡油加氢产品质量符合中国石化HVIⅠa润滑油基础油标准。  相似文献   

4.
王士新 《工业催化》2016,24(7):59-62
介绍了使用中国石化抚顺石油化工研究院研制的石蜡加氢催化剂进行高压一段串联加氢制取食品级凡士林的试验情况。结果表明,在试验条件下,选择适宜的凡士林原料和操作条件可以制取食品级凡士林,加氢产品质量符合SH/T0767-2005食品级凡士林标准,但操作条件调整空间较小,提高空速和降低反应温度空间受限;加氢制取食品级凡士林的运转周期约500 h,不能进行长周期运转;质量较差的凡士林原料不能制取食品级凡士林。  相似文献   

5.
采用成型载体等体积浸渍法制备CoMo/Al_(2)O_(3)和NiMo/Al_(2)O_(3)催化剂,并进行不同比例级配,在100 mL固定床加氢评价装置上进行高芳烃油选择加氢评价。结果表明,随NiMo/CoMo比例的增加,高芳油加氢脱硫率逐渐增加,NiMo-CoMo级配比为3∶9时,脱硫率最大,加氢产品的芳烃损失最小。在NiMo/CoMo催化剂级配比3∶9、反应温度360℃、反应压力4.0 MPa、空速1.5 h^(-1)条件下,加氢产品的硫含量小于0.2%,芳香分损失在5个百分点以内,未加氢的含硫和含氮化合物主要为空间位阻较大的化合物。  相似文献   

6.
选取商品柴油加氢精制催化剂和催化柴油选择加氢裂化催化剂,采用N_2吸附-脱附、XRD、TPD、Py-IR等对催化剂进行表征,结果表明,选择加氢裂化催化剂较加氢精制催化剂具有更大的比表面积和孔容,具有更多的中强酸量和较少的弱酸量,并具有更多的B酸中心。以中石化青岛炼化公司生产的高密度、低十六烷值的FCC柴油为原料,对商品加氢精制催化剂和加氢精制/选择加氢裂化组合催化剂进行FCC柴油中多环芳烃选择加氢工艺条件的考察,结果表明,加氢精制催化剂适宜的反应条件为370℃、1.25 h~(-1)、8.0 Mpa,加氢精制/选择加氢裂化催化剂适宜的反应条件为350℃、1.25 h~(-1)、8.0 MPa,组合催化剂的多环芳烃选择加氢效果较好。  相似文献   

7.
王铁刚 《当代化工》2005,34(1):8-10
从工程角度论述了生产优质微晶蜡的工艺路线,以及加氢工艺的反应条件对产品质量的影响,即不同的温度、压力和空速对产品的含油和紫外吸光度的影响。采用白土预精制和一段串联加氢联合工艺,在适合的反应条件下,可生产食品级优质微晶蜡。  相似文献   

8.
杜晓敏  邵德明 《当代化工》2004,33(6):334-336
着重介绍了喷雾脱油生产微晶蜡原理并对影响喷雾脱油生产微晶蜡的关键因素进行了考察,找出喷雾脱油生产微晶蜡的合适工艺条件。  相似文献   

9.
采用共沉淀法制备了SiO_2-TiO_2-ZrO_2三元复合氧化物载体,用浸渍法负载活性组分MoP制备MoP/SiO_2-TiO_2-ZrO_2催化剂。在固定床微反应器上,采用正交实验研究了反应温度、空速、氢油体积比和氢分压对催化剂噻吩加氢脱硫性能的影响,并对劣质催化裂化(FCC)柴油的脱硫性能进行了考察。结果表明,催化剂最佳加氢脱硫条件为:反应温度380℃,空速2 h^(-1),氢油体积比500,氢分压4 MPa,此条件下,FCC柴油脱硫率达97.50%。  相似文献   

10.
张志银 《当代化工》2004,33(4):217-219
介绍了氧化微晶蜡的研制过程,实验结果表明,在高效的催化剂,适宜的反应温度、反应时间、空气流量下可生产出酸值超过30mg KOH/g的氧化微晶蜡产品。  相似文献   

11.
聚α-烯烃合成油是所有合成润滑油基础油中性能最优异的一种,具有黏度指数高、低温性能和高温氧化安定性好、抗燃性好及挥发性低等优点,是未来应用广泛的合成基础油,市场需求持续增加。综述聚α-烯烃基础油及其加氢工艺、加氢精制催化剂的研究现状。传统聚α-烯烃合成油生产工艺有乙烯齐聚法和石蜡裂解法等,潞安煤制油工艺和天然气制油工艺等新工艺也开始兴起。加氢精制工艺对提高聚α-烯烃合成油的质量起着至关重要的作用,北京燕化聚华工贸有限公司两段加氢精制工艺和中国石油兰州润滑油厂聚α-烯烃合成油加氢精制处理工艺均极大改善了聚α-烯烃合成油的质量。聚α-烯烃合成油加氢精制效果很大程度取决于加氢精制催化剂性能,要求加氢精制催化剂具有较高的选择性和较好的稳定性。  相似文献   

12.
对南阳石蜡精细化工厂微晶蜡高压加氢装置在生产食品级微晶蜡的过程中影响食品级微晶蜡质量的因素进行分析,指出了生产过程中的关键点,对生产中存在的问题提出了应对措施。  相似文献   

13.
在300 mL连续加氢实验装置上,以神华鄂尔多斯直接液化工厂生产的加氢稳定油为原料,以加氢精制剂RNC-2为催化剂,考察了不同反应温度和体积空速对加氢产物性质及加氢精制反应过程的影响.结果 表明:升高反应温度或降低体积空速,芳烃加氢饱和反应过程中的氢耗增大,产品油的密度、运动黏度及馏程降低;从不同反应条件加氢产品油中芳...  相似文献   

14.
15.
多环芳烃加氢饱和既有利于环境保护,还能促进煤焦油的高效率利用。以煤焦油中(210~360)℃富含2-4环多环芳烃馏分为研究对象,采用加氢饱和催化剂与分子筛催化剂作为双效耦合催化剂,对不同反应条件下煤焦油催化加氢反应性能进行研究。结果表明,双效耦合催化剂具备分子筛催化剂与加氢饱和催化剂的催化特性,同时具备两者相互作用较小的稳态结构,且其在多环芳烃催化加氢反应中的活性介于分子筛催化剂和加氢饱和催化剂之间;活性金属组分Ni和Mo在催化剂表面分布稳定均匀。各操作条件对多环芳烃加氢性能存在不同程度的影响,双效耦合催化剂耦合比为4∶6时,多环芳烃催化加氢性能优于其他耦合比催化剂,在反应温度380℃、氢初压8.0 MPa、反应时间60 min和剂油比5∶100条件下,具有较好的加氢性能。馏分油多次选择性加氢后,饱和分量明显增加,胶质和芳香分量明显减少。  相似文献   

16.
时瑞红 《河南化工》2005,22(12):45-45
针对南阳石蜡精细化工厂所加工原油蜡含量高的特点,提出了发展70^#微晶蜡的技术改造方案。该方案具有一次投资少、原料费用低、经济效益好等优点。  相似文献   

17.
杜周  李保山 《工业催化》2017,25(8):59-63
为了提高C4馏分的利用价值并实现扩大乙烯裂解料的来源,使用自制的镍系加氢催化剂和钴-钼-镍系加氢精制催化剂,在固定床200 mL绝热评价装置上对C4馏分液化石油气物料进行全加氢实验,论证镍系加氢催化剂适用于含有低碳含硫化合物C4馏分的可行性,对模拟的某化工厂C4馏分原料进行加氢饱和性能考察,对含有高浓度双烯烃和炔烃的丁二烯抽提装置尾气进行原料模拟和全加氢评价。结果表明,自制催化剂适用于含有低碳硫化物的C4馏分全加氢,可以处理高含双烯烃的C4物料,并具有良好的低温活性。  相似文献   

18.
增产低碳烯烃、轻质芳烃等产物是催化裂解技术发展的趋势,反应条件是影响催化裂解产物分布的关键因素。介绍催化裂解过程涉及的反应机理,概述反应温度、剂油质量比、停留时间(空速)、水油质量比等反应条件,裂解装置和原料油性质对产物收率的影响,结合工业实例分析反应条件对产物收率的影响。  相似文献   

19.
张守运 《工业催化》2018,26(9):61-63
介绍中国石化抚顺石油化工研究院开发的C_6馏分选择性加氢催化剂在550 kt·a-1苯抽提蒸馏装置原料预处理C_6馏分选择性加氢单元的工业应用。结果表明,C_6馏分选择性加氢脱烯烃工艺替代传统白土精制工艺,C_6馏分原料溴指数为(7 500~12 000) mg-Br·(100g)^(-1),在反应器入口温度130℃、入口压力1.8 MPa、氢油体积比250∶1~280∶1和空速2.5 h^(-1)条件下,反应产物溴指数小于5 mg-Br·(100g)^(-1),且芳烃损失接近于0,达到国内同类装置先进水平。  相似文献   

20.
采用浸渍法制备Pd-Ag/α-Al2O3催化剂,采用碳二前脱丙烷前加氢工艺系统考察反应器入口温度、空速和反应压力对催化剂性能的影响。结果表明,随着反应器入口温度升高,乙炔和丙炔+丙二烯转化率提高,乙烯选择性提高至一定值后趋于稳定,丙烯选择性波动不大,正丁烯生成量增加,较为适宜的反应器入口温度为(60~70)℃;随着空速升高,乙炔和丙炔+丙二烯转化率降低,乙烯选择性提高,丙烯选择性变化不大,正丁烯生成量降低,较为适宜的空速为(12 000~14 000)h-1;随着反应压力升高,乙炔转化率和丙炔+丙二烯转化率略增,乙烯选择性降低,较为适宜的反应压力为3.6 MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号