首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High quality Tl2Ba2CaCu2O8 (Tl-2212) superconducting thin films are prepared on both sides of 2 in. LaAlO3(0 0 1) substrates by off-axis magnetron sputtering and post-annealing process. XRD measurements show that these films possess pure Tl-2212 phase with C-axis perpendicular to the substrate surface. The thickness unhomogeneity of the whole film on the 2 in. wafer is less than 5%. The superconducting transition temperatures Tcs of the films are around 105 K. At zero applied magnetic field, the critical current densities Jcs of the films on both sides of the wafer were measured to be above 2 × 106 A/cm2 at 77 K. The microwave surface resistance Rs of film was as low as 350 μΩ at 10 GHz and 77 K. In order to test the suitability of Tl-2212 thin films for passive microwave devices, 3-pole bandpass filters have been fabricated from double-sided Tl-2212 films on LaAlO3 substrates.  相似文献   

2.
Progress in the fabrication of epitaxial, high-J c, biaxially aligned YBCO thick films on Rolling-assisted biaxially textured substrates (RABiTs) is reported. RABiT substrates comprise a biaxially textured metal substrate with epitaxial oxide buffer layers suitable for growth of superconductors. Oxide buffer layers have been deposited using three techniques: laser ablation, electron-beam evaporation, and sputtering. Epitaxial YBCO films grown using laser ablation on such substrates have critical current densities approaching 3 × 106 A/cm2 at 77 K in zero field and have field dependences similar to epitaxial films on single crystal ceramic substrates. Critical current densities in excess of 0.2 MA/cm2 have been obtained on stronger, nonmagnetic substrates. In addition, samples with J e of 12.5 kA/cm2 at 77 K have been fabricated. The highest strain tolerence obtained so far is 0.7% in compression and 0.25% in tension. Deposited conductors made using this technique offer a potential route for the fabrication of long lengths of high-J c wire capable of carrying high currents in high magnetic fields and at elevated temperatures.  相似文献   

3.
The in situ process—laser ablation in combination with thermal evaporation of Tl2O—has turned out to be a preparation method for single-phase and epitaxial TlBa2Ca2Cu3O9 (1223) thin films with T c values up to 109 K. It was found by several groups that a partial substitution of Tl by Bi simplifies the phase development of the 1223 compound in the usual two-step process. We have investigated the influence of the Bi doping on the in situ growth. X-ray measurements show that the films consisted mainly of the 1223 compound. In 300-nm thin films there was no evidence of a Bi amount in the crystal structure, but thinner films (80 nm) show a small amount of Bi. We concluded that Bi doping supports the phase development of the 1223 compound only in an early stage of the film growth. The Bi-doped films have higher T c values up to 114 K, higher j c values up to 6 × 105 A/cm2 (77 K, 0 T), and lower surface resistances of 56 m (77 K, 87 GHz) than the undoped films.  相似文献   

4.
YBa2Cu3O x (YBCO) films, Zn-doped YBCO (YBCO : Zn) films, and their bilayers have been epitaxially grown on SrTiO3(100) and single-crystal YBCO(001) substrates by metalorganic chemical vapour deposition. The YBCO(001) films homoepitaxially grown on YBCO(001) substrates have flat surfaces on an atomic scale, and interfaces free from crystalline defects. We can systematically reduce the superconducting transition temperature (T c) of YBCO : Zn films from 90 K to 37 K by increasing Zn concentration. The bilayers have a sharp distribution of Zn as evaluated fromT c measurements of the upper YBCO films and depth profiles of secondary ion mass spectrometer, suggesting the possibility to form the homoepitaxial SNS (S, superconductor; N, normal metal) junction operatable between 40 K and 90 K.  相似文献   

5.
Anex situ process has been developed to produce thin superconducting Tl2Ba2CaCu2O8 films. The properties of films grown on different substrates using different annealing regimes were studied. Critical temperatures of 103–107 K were measured on films prepared in a broad range of annealing temperatures on SrTiO3, LaAlO3, and Y-ZrO2 substrates. A critical current density,J c, of 2×106 A/cm2 at 77 K was measured on LaAlO3. Film morphology was studied by SEM, AFM, and STM.  相似文献   

6.
Submicrometer epitaxial films of YBa2Cu3O7(YBCO) on (100) LaAlO3 were made by coevaporation and furnace annealing. Samples from more than a dozen runs are used in this study. The zero resistance transition temperature (T c) is high (89 or 90 K) if the film composition is phase pure (Ba/Y=2, Cu/Y=3) or if it is enriched in Ba and Cu. For these compositions the critical current density (J c) at 77 K has an average value of 2×105 A cm–2, with a tendency for decreasingJ c with increasing film thickness (0.2 to 0.8m). Variations inJ c are not correlated with deviations from ideal stoichiometry. Steeper slopes of the resistance-temperature curves above 100 K and lower values of the room-temperature resistivity are associated with high values ofJ c. If the film composition is enriched in Y relative to Ba and Cu,T c decreases by several degrees.  相似文献   

7.
Detailed transmission electron microscopic study has been carried out on heteroepitaxial YBa2Cu3O7/SrTiO3/YBa2Cu3O7 trilayer thin films grown on (100)SrTiO3 substrates prepared by DC and RF magnetron sputtering. The microstructural results showed the existence of somea-axis-oriented YBCO grains 20–90 nm wide in thec-axis-oriented YBCO matrix. Some of thea-axis grains in the lower YBCO thin film layer have protruded into the above SrTiO3 layer, which may cause short circuit between the two YBCO superconducting layers. This is unsuitable for the application of trilayer thin films for microelectronic devices. The defects on the surface of the substrates would also influence the growth quality of the YBCO thin films.  相似文献   

8.
High-T c Bi(Pb)-Sr-Ca-Cu-O thin films have been made on single-crystal MgO substrates using high-pressure dc sputtering technique. X-ray studies confirm the crystallinity and highly oriented structure withc-axis perpendicular to the substrate. By optimizing the annealing schedule the formation of the high-T c phase is stabilized. The best film exhibited superconducting transition temperature with zero-resistance temperature,T c(0), as high as 101 K. Temperature dependence ofJ c indicates the presence of Josephson-type weak links.  相似文献   

9.
The variation of critical current density at 77 K as a function of film thickness was studied for YBa2Cu3O7 films on (100) LaAlO3 substrates. Film thicknesses were in the range 0.2–1.6m. The films were deposited by co-evaporation and post-annealed under conditions which have previously resulted in high-quality films (750°C and an oxygen partial pressure of 29 Pa). The critical current density at 77 K exceeds 1 MA cm–2 for the thinner films, and decreases with increasing film thickness in excess of about 0.4m. The decrease is in rough agreement with a switch fromc-axis toa-axis growth at about this critical thickness. A good anticorrelation was found between room temperature resistivity and critical current density at 77 K. The results are compared to those obtained before by post-annealing at 850°C in 1 atm of oxygen.  相似文献   

10.
The crystal structure and superconductivity of MgB2 thin films grown on various oxide substrates were investigated by X-ray diffraction and resistance measurement. The films were prepared by a two-step method, in which precursors B films were annealed in Mg vapor at 900C. The X-ray diffraction shows that the MgB2 films grown on C–AL2O3, R–AL2O3, and MgO (001) are c-axis oriented while the films grown on SrTiO3 (001), LaAlO3 (001), and ZrO2 (001) are aligned with the (101) direction normal to the substrate planes. All the grown films show superconductivity and their transition temperature varies with the substrates in the range of 34–39 K. We think that the transition temperature variation is probably due to the lattice matching between the film and the substrate, as well as the interdiffusion at the film/substrate interface. The experimental results suggest that if there is no severe interdiffusion at the film/substrate interface in the high temperature annealing process, more substrates could be used for the growth of MgB2 films using the two-step method.  相似文献   

11.
Thin films of highT c superconductor YBa2Cu3O7−x were obtained by magnetron sputtering. MgO, YSZ, YSH and Al2O3 single crystals were used as substrates. Epitaxial films with tetragonal structure havingT c 55–60 K grow at substrate temperaturesT s between 930 K and 980 K. Orientation of the films in thisT s range was (100) and (001) for (100) MgO substrate, (111) and (001) for (1012) Al2O3 and (111) YSH and (113) or (103) on (110) YSZ and (111) YSH. Single crystalline films with orthorhombic structure and (001) orientation were grown on all the substrates whenT s exceeded 980 K. They haveT c>80 K.  相似文献   

12.
We report on fabrication and characterization of MgB2 thin films and tunnel junction structures. The MgB2 films were prepared on Al2O3, Si, glass, and plastic foil substrates by either vacuum codeposition of boron and magnesium, or high-temperature magnesium annealing of boron films. The crystalline structure of our films depended directly on the method of preparation. The films prepared by codeposition and postannealed in Ar atmosphere were amorphous with nanocrystal inclusions and were characterized by very smooth surfaces. On the other hand, the boron-precursor films annealed in magnesium vapor were rough, polycrystalline with approximately 1-m-diameter single-crystal blocks. Because of their surface quality, the amorphous films were used for preparation of point contact junctions and for optical characterization. The point-contact spectra of tested junctions exhibited a two-gap structure. The MgB2 polycrystalline films was used for bulk transport studies. The best films were characterized by the critical temperature T c of up to 39 K and the current density j c at 4.2 K of about 107 A/cm2.  相似文献   

13.
Our technique of reactive thermal co-evaporation has been extended to fabricate large films (up to 4 in.) of YBa2Cu3O7 with high quality. A rotating substrate holder is used to separate the deposition and oxidation processes. This allows free access of the metal vapors. As large substrate wafers we use Al2O3, Si, and GaAs with buffer layers of CeO2, YSZ, and MgO, respectively. On all substrates, the uniformity of thickness and composition was better than 2%. Inductively measuredT c andj c (77 K) were 87.5±0.2 K and >1×106 A/cm2, respectively, across the full wafer area. This holds also for GaAs substrates due to a new procedure of capping by Si3N4.This work was supported by the German Bundesminister für Forschung und Technologie.  相似文献   

14.
The Ru-1232 compounds have been synthesized in the (Ru1–xNb x )Sr2(GdCe1.8Sr0.2)Cu2O z system, and effects of Nb substitution for Ru on superconductivity and ferromagnetism of the Ru-1232 compounds have been investigated. First, X-ray powder diffraction study shows that nearly the single 1232 phase samples can be obtained in the x composition range from 0.0 to 0.3. Then, from the electrical resistivity study, it is found that each of the samples shows resistivity dropping phenomenon at two temperatures of T c l and T c h, which originates from superconductivity of the Ru-1232 phase and the Ru-1222 one, respectively. Both of the starting temperatures are lowering with increasing Nb content x. Lastly, from the magnetic susceptibility study, it is found that superconducting transition temperature T c is 20 K for the Ru-1232 sample with x = 0.0 and the ferromagnetic transition temperature T m is about 90 K. This study also shows that both of the values of T c and T m become low with increasing x from 0.0 to 0.3.  相似文献   

15.
We have investigated the superconducting behavior of high-T c YBa2Cu3O7 (YBCO) thin films containing BaO impure phase produced by pulsed laser deposition. The thin films were characterized by the standard four-probe method, X-ray diffraction (XRD), and scanning electron microscopy (SEM). XRD showed that all these thin films contained BaO impurity, with thec-axis normal to the surface of the substrates. The presence of impurity existed from substrate temperatureT s of 727 to 796°C. When these thin films with BaO impurity were measured under the magnetic fields, it was found that the critical current densityJ c increased slightly with increase in magnetic fieldB within the range ofB500 G, in the case ofB perpendicular to thec-axis of the film.  相似文献   

16.
We have investigated effects of the lanthanide element Ln and the composition changes on the superconducting transition temperatureT c in the Ru-1232 system, RuSr2(Gd1−x Ln x Ce1.8Sr0.2)Cu2O z (Ln = Sm, Dy, and Ho). At first, in the case of the samples with Ln = Sm among almost the single 1232 phase samples, the values of the superconducting onset temperatureT co are almost the same forx=0.00−0.15, and each of the lattice parametersa andc is almost constant. While, in each of the cases of the samples with Ln = Dy and Ho, the sample withx=0.05 shows the maximum values for both the superconducting onset temperatureT co and the zero resistivity temperatureT cz. Especially for the sample with Ln = Dy, the values ofT co andT cz are 18.5 and 6.5 K, respectively. These are higher than those of the mother sample of RuSr2(GdCe1.8Sr0.2)Cu2O z . Moreover, from variations ofT co, lattice parameters ofa andc in the RuSr2(Gd1−x Dy x Ce1.8Sr0.2)Cu2O z system as a function of Dy contentx, the relationship between the superconducting transition temperature and the lattice parameters in the present system are investigated.  相似文献   

17.
A cadmium analogue of the mercury system with nominal composition CdBa2(Ca1–xYx)Cu2Oy has been synthesized. Thex=0 samples contain about 12 vol.% of the 1212 phase but are not superconducting. Thex=0.3 samples are superconducting atT on = 103 K. The EDX analysis of 18 microcrystals shows a broad cationic distribution of the different components. The observed broad superconducting transition is attributed to the variousT c of the different microcrystals.  相似文献   

18.
CeO2/YSZ/CeO2 buffer layers were deposited on textured Ni substrates byin situ pulsed laser deposition. The out-of-plane texture and in-plane texture of the buffer layers were characterized by X-ray diffraction ω-scans and ϕ-scans. Using this CeO2/YSZ/CeO2 architecture as the buffer layers, high quality YBCO films with a zero-resistanceT c about 90 K and a self-field critical current densitiesJ c above 106 A/cm2 at 77 K can be obtained on Ni substrates.  相似文献   

19.
In the Pb-doped Bi-Sr-Ca-Cu-O system, optimization of the composition and heat treatment conditions at which a greater amount of the high-T c phase forms has been reported in our early paper [1], where the temperature of zero resistance was 107K. Recently, we have achieved zero resistance at 117 K and observed an a.c. susceptibility step at around 150 K by changing the Cu composition in the Bi1.6Pb0.4Sr2Ca2Cu2+x O y system (x=0, 0.4, 0.8, 1.2, and 1.6).  相似文献   

20.
Recently, superconducting Nd1Ba2Cu3Oy (Ndl23) thin films with high superconducting transition temperature (T c) have been successfully fabricated at our institute employing the standard laser ablation method. In this paper, we report the results of surface characterization of the Nd123 thin films using an ultrahigh vacuum scanning tunneling microscope/spectroscopy (UHV-STM/STS) and an atomic force microscope (AFM) system operated in air. Clear spiral pattern is observed on the surfaces of Nd123 thin films by STM and AFM, suggesting that films are formed by two-dimensional island growth mode. Contour plots of the spirals show that the step heights of the spirals are not always the integer or half-integer number of thec-axis parameter of the structure. This implies that the surface natural termination layer of the films may not be unique. This result is supported byI-V STS measurements. The surface morphology of the Nd123 thin films is compared with that of thec-axis-oriented Y1Ba2Cu3Sy thin films. Surface atomic images of the as-prepared Nd123 thin films are obtained employing both STM and AFM. STS measurements show that most of the surfaces are semiconductive. The results of STS measurements together with the fact that we are able to see the surface atomic images using scanning probe microscopes suggest that exposure to air does not cause serious degradation to the as-prepared surfaces of Nd123 thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号