首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu H  Bhushan B 《Ultramicroscopy》2003,97(1-4):321-340
Molecularly thick perfluoropolyether (PFPE) films are considered to be good protective films for micro/nanoelectromechanical systems (MEMS/NEMS) to reduce stiction, friction, and improve their durability. Understanding the nanotribological performance and mechanisms of these films are quite important for efficient lubrication for MEMS/NEMS devices. These devices are used in various operating environments and their effect on friction, adhesion and durability needs to be clarified. For this purpose, mobile and chemically bonded PFPE films were deposited by dip coating technique. The friction and adhesion properties of these films were characterized by atomic force microscopy (AFM). The effect of rest time, velocity, relative humidity, and temperature on nanotribological properties of these films was studied. Durability of these films was also measured by repeated cycling tests. The adhesion, friction mechanisms of PFPE at molecular scale, and the mechanisms of the effect of operating environment and durability are subject of this paper. This study found that adsorption of water, formation of meniscus and its change during sliding, viscosity, and surface chemistry properties play a big role on the friction, adhesion, and durability of the lubricant films.  相似文献   

2.
MoS2/Ti low-friction coating for gears   总被引:1,自引:0,他引:1  
The applicability of a multilayer composite surface coating in gears is discussed in this work, mainly in what concerns to gear efficiency at normal operating conditions and to scuffing load capacity. The average friction coefficient between gear teeth is discussed and compared with uncoated steel gears.The disulfide molybdenum/titanium (MoS2/Ti) composite coating is studied and the deposition procedure is described.Several screening tests, like Rockwell indentations, ball cratering, pin-on-disc and reciprocating wear, were performed to evaluate the adhesion to the substrate, the tribological performance of this coating and his applicability in heavy loaded rolling-sliding contacts, such as found in gears.FZG gear efficiency tests were performed using type C gears in order to evaluate the influence of the surface coating in gear efficiency, for a wide range of operating conditions. These tests in conjunction with a numerical model for the energetic balance of the FZG gearbox allowed the determination of the average friction coefficient between gear teeth, taking into account the presence of the surface coating.FZG gear scuffing tests were also performed using type C gears in order to evaluate the coating anti-scuffing performance, which proved to be very significant.  相似文献   

3.
The influence of multilayer composite surface coatings on gear scuffing load carrying capacity, gear friction coefficient and gearbox efficiency is discussed in this work.The deposition procedures of molybdenum disulphide/titanium (MoS2/Ti) and carbon/chromium (C/Cr) composite coatings are described.Tests reported in the literature, such as Rockwell indentations, ball cratering, pin-on-disc and reciprocating wear, confirm the excellent adhesion to the substrate and the tribological performance of these coatings, suggesting they can be applied with success in heavy loaded rolling–sliding contacts, such as those found in gears.FZG gear scuffing tests were performed in order to evaluate the coatings anti-scuffing performance, which both improved very significantly in comparison to uncoated gears. These results in conjunction with the friction power intensity (FPI) scuffing criterion allowed the determination of a friction coefficient factor XSC to include the coating influence on the friction coefficient expression.The composite coatings were also applied to the gears of a transfer gearbox and its efficiency was measured and compared at different input speeds and torques with the uncoated carburized steel gears. Significant efficiency improvement was found with the MoS2/Ti coating.  相似文献   

4.
Process selection for repair of mechanical components due to wear and corrosion, e.g. damage of aluminum casting housings of fuel injection systems, is based on cost and response time factors, provided that the mechanical performance is maintained within acceptable limits. One of the promising and emerging repair technologies is Cold Gas-Dynamic Spray (CGDS) coating, where a high-pressure gas propels fine powder particles to very high velocities to produce surface coating. It is essential to identify the optimum process conditions and powder composition to produce repaired surfaces with tribological properties close to those of the originally manufactured part (without coating). The objective of this work is to compare the dynamic friction and fretting wear properties of the repaired surfaces using various types of coating composition and spraying techniques. Eight types of CGDS coatings, applied to AMS 4260 aluminum specimens, were fretted against 440C stainless steel specimens at low and high nominal loads to assess their fretting wear resistance, dynamic friction properties and damping capacity. The optimum coating composition and process conditions were identified. In comparison to the uncoated specimen, this optimum coating offered tribological characteristics close to the uncoated material and even better dynamic friction properties.  相似文献   

5.
Performance results of MEMS coated with a conformal DLC   总被引:4,自引:0,他引:4  
A MEMS electrostatic lateral output motor has been successfully coated with a diamond like carbon (DLC) coating to protect against wear. Experiments were performed to characterize coating chemistry and performance. Friction results from accelerated screening tests using a miniature, lightly loaded ball on flat tribometer showed that the DLC coating maintained low friction longer compared to uncoated silicon. DLC on DLC experiments showed the lowest friction, and those that were run in 30% RH showed a much longer lifetime than ones run in dry air. Uniformity of DLC coverage on MEMS was verified by Auger electron spectroscopy (AES), microRaman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Micrographs revealed that there is about a 3:1 ratio of DLC coating for a line of sight deposition region to a non line of sight deposition region. DLC coated MEMS outperformed uncoated MEMS by 16X in air and 300X in vacuum, albeit performance in vacuum was lower than in air. A very clear difference in wear debris was seen between devices run in air and in vacuum. Cylindrical rolls were dominant in the devices that were run in air and platelets were dominant on devices run in vacuum. Ultimately, the DLC coating was found to greatly improve performance over uncoated MEMS.  相似文献   

6.
The effect of coatings deposited on cutting tools using the PVD method on the tribological characteristics of the surface layer after the finish turning of 41Cr4 and 30CrMnSi steels is considered. The tribological characteristics of the turned surfaces change substantially. The best results are achieved when using the (AlTi)N coating, which ensures substantial decreases in the coefficient of friction (by 35–40%) and the temperature in the friction zone (by up to 30%). The dependences of the wear on the friction path are linear; the wear rate of the surfaces turned by the coated tools is significantly lower than that for the surfaces turned by the uncoated tools. Compared to the uncoated R25 hard alloy, the difference in the wear rates reaches 60% in favor of (AlTi)N and (TiAl)N coatings. A decrease in the thickness of the coating from 4 to 2 μm leads to a growth in the coefficient of friction and the temperature. An X-ray structural analysis of the surface layers of the turned specimens has revealed the presence of Fe-Al solid phases, which improve the wear resistance of the surface and the efficiency of coatings like (AlTi)N.  相似文献   

7.
The presence of coatings and surface topography play an important role in the tribological performance of sliding components. Depending on the coating used, it is possible to reduce friction and/or reduce wear. However, although there may be low friction and wear‐resistant coatings suitable for use in pistons, some coatings may hinder the tribological performance by changing the lubrication regime or by preventing additives from their intended function through chemical mechanisms. In this work, piston skirt segments extracted from a commercial aluminium alloy piston were coated with a diamond‐like carbon (DLC) coating, a graphite–resin coating or a nickel–polytetrafluoroethylene (Ni–PTFE) coating and were tribologically tested using a reciprocating laboratory test rig against commercial grey cast iron liner segments. The tribological tests used commercial synthetic motor oil at a temperature of 120 °C with a 20 mm stroke length at a reciprocating frequency of 2 Hz. Results showed that the graphite–resin coating, although it may serve as a good break‐in coating, wears rapidly. The Ni–PTFE coating showed friction reduction, whereas the DLC coating wore off quickly due to its small thickness. Furthermore, the higher hardness of the DLC coating relative to the cast iron liner surface led to pronounced changes on the liner counterface by polishing. In contrast with the uncoated piston skirt segments, all of the coatings prevented the formation of a visible tribochemical film on the cast iron surface. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Zsidai  L.  Samyn  P.  Vercammen  K.  Van Acker  K.  Kozma  M.  Kalácska  G.  De Baets  P. 《Tribology Letters》2004,17(2):269-288
Polymers are increasingly used in tribological applications, because of their self-lubricating ability, corrosion resistance and chemical compatibility. However, their performance depends strongly on the parameters of the total tribological system. Not only polymer characteristics, but also counterface properties become important because of their influence on friction and wear, on surface energy and on the thermal conductivity of the total system. Applying a Diamond-Like Nanocomposite (DLN) coating on a steel counterface can improve the tribological behaviour of the sliding couple under certain conditions. In the case of metal sliding against DLN, the high hardness and the wear resistance of the coating is advantageous for better tribological properties. However, for polymers sliding against DLN, the lower thermal conductivity of the DLN coating compared with a steel mating surface dominates friction and wear. In case of polyamides this results in worse tribological performance in contact with the DLN coating, because of polymer melting. In the case of more rigid polymers, such as, e.g., POM-H and PETP, lower coefficients of friction lead to lower frictional heat generation. In these cases, the thermal characteristics of the counterface are less important and the lower surface energy of the DLN coating is favourable for decreased adhesion between the polymer and the coating and consequently better tribological properties.  相似文献   

9.
The effects of counter-surface chemistry and adsorption of water and alcohol from the environment on the tribological responses of silicon surfaces were investigated using atomic force microscopy. When scratching with SiO2 tips at contact pressures below the hardness of the materials, changing the environment yielded drastically different wear behaviors. In humid air, the adsorbed water molecules facilitated wear of the surface and material removal. In N2 environment, there was subsurface deformation but no wear, so the surface protruded outward in the rubbing region. In the ethanol vapor condition, the adsorbed alcohol molecules acted as a lubricant and prevented any discernible changes to the surface even at contact pressures above 1 GPa. These results extend upon previous studies of vapor-phase alcohol lubrication using even more protective longer-chain alcohols where failure was observed at much lower contact pressures in macroscale tests, probably due to high-pressure asperity contacts. Thus, the chemical environment can govern the response of silicon to mechanical rubbing. Rubbing with a diamond tip, however, yielded protrusions in all three environments, showing that the chemistry of the counter-surface also contributes to the tribological response; in this case, diamond is not tribochemically reactive toward Si surface. The protrusion formed by the diamond tip in ethanol vapor was only ~20 % the height of the one in humid air, even though the measured friction coefficients (and so the applied shear forces) were similar. These results clearly show that the surface chemistry at the tribological interface can substantially alter both the wear and subsurface damage processes.  相似文献   

10.
ABSTRACT

Tribological studies were carried out with tetrahedral amorphous diamond-like carbon (ta-C DLC) coatings, varying in thickness and roughness, using two different contact configurations lubricated with seven types of hydraulic oils. Tribopair of cast iron and ta-C coated steel were tested in both non-conformal and conformal, unidirectional sliding contacts. The friction and wear results were mainly affected by the thickness of the coating in the non-conformal contact and the surface roughness of the coating in the conformal contact. Tests done with mineral base oil containing rust inhibitor in the non-conformal contact and with Polyalphaolefins and synthetic ester base oils in the conformal contact resulted in the lowest friction while that with mineral base oil containing zinc resulted in high friction and counterface wear. The results highlight the interdependence of contact configuration, lubricant chemistry, coating’s surface morphology and coating’s thickness in determining the tribological behaviour of ta-C coatings under boundary lubrication.  相似文献   

11.
Six diamond coatings were produced by microwave plasma-assisted chemical vapour deposition (MW PACVD) on polished SiC substrates. Process gas pressure and process gas composition were varied systematically, resulting in different coating morphologies, roughnesses and grain sizes. Friction and wear were investigated for unlubricated vibrating contact conditions in air at room temperature. Tribological tests on diamond coatings were performed in a ball-on-disc configuration, with steel balls (100Cr6) and alumina balls acting as counterbodies. For comparison of the tribological performance of the diamond coatings, standard tests were performed with a stroke of 200 μn, a load of 10 N, and a frequency of 20 Hz. The effect of relative humidity (RH) was investigated by testing in dry (3% RH), in normal (50% RH), and in moist air (100% RH), respectively To investigate running-in effects and wear propagation, the test duration (104, 105, and 1.2·106 sliding cycles) was varied. For steel/diamond pairings, high wear at the steel ball and high friction were measured, influenced by roughness and grain size of the diamond coating and by relative humidity. For Al2O3 against diamond, a pronounced running-in of friction and wear was found. High friction and high wear at the beginning of each test are followed by a stationary phase with extremely low friction coefficients (⩽ 0.05) and with wear rates below the limit of resolution. This running-in depends on grain size and roughness of the coating, on relative humidity, as well as on the operational parameters. Surface analysis using SEM, EDX, LRS and AFM was conducted, to investigate tribologically induced surface changes.  相似文献   

12.
The tribological behaviour in water-based environments has been studied for a tungsten carbide-doped DLC coating (WC/C) deposited by physical vapour deposition (PVD) on bearing steel. Several tribological test equipments have been used to characterise the wear rate, coefficient of friction and resistance to seizure of the coated system, in comparison with uncoated bearing steel surfaces. It was observed that the wear was decreased and the coefficient of friction reduced in pin-on-disc measurements for poor lubricants. Further, the resistance to seizure in the four-ball method was improved by a factor of approximately three. Results from Reichert measurements showed a decreased wear rate and also a very pronounced running-in behaviour of the coating for some water-based lubricants. It has been shown that the performance of tribological systems with water-based lubricants can be significantly improved with this type of DLC coating.  相似文献   

13.
Cu/h-BN self-lubricating coating was prepared on AISI1045 steel by electrospark deposition. The friction coefficient and wear rates were measured using the ball-on-disk method, and the tribological behaviors were discussed. Results showed that the friction coefficient decreased with an increase in sliding speed and load. The wear rate decreased with an increase in sliding speed and increased with an increase in load. The self-lubricating coating exhibited much lower friction coefficient and wear rate than the uncoated mild steel under the test condition. SEM micrographs show that the main wear mechanisms of the self-lubricating coating are abrasive wear and fatigue wear.  相似文献   

14.
为提高MoS2润滑涂层承载力和抗湿性能,使用磁控溅射技术制备CuS掺杂MoS2复合涂层,并对制备涂层进行220、320和420℃真空退火处理,以发挥CuS与MoS2协同润滑作用。采用场发射扫描电子显微镜、激光拉曼光谱分析涂层结构,通过洛氏硬度压痕试验、摩擦磨损试验和纳米压痕试验对涂层性能进行分析。实验结果表明:随CuS靶溅射功率提高,涂层中出现颗粒长大和CuS结晶化趋势,且CuS掺杂抑制了MoS 2形核长大,涂层膜-基结合力有所下降;真空退火处理后CuS-MoS2复合涂层表面发生分解,厚度明显降低,MoS2(002)相形核长大,摩擦学性能得到提升;320℃退火处理后涂层在常温和RH70%大气环境下获得最低平均摩擦因数0.08,纳米硬度达到5.64 GPa,并具有较好的耐磨损性能。研究认为由于CuS受热分解导致复合涂层结构和成分变化,生成了有利于发挥CuS与MoS2协同润滑效应的微晶相,使得涂层润滑性能得到明显提升。  相似文献   

15.
MoS2–Cr coatings with different Cr contents have been deposited on high speed steel substrates by closed field unbalanced magnetron (CFUBM) sputtering. The tribological properties of the coatings have been tested against different counterbodies under dry conditions using an oscillating friction and wear tester. The coating microstructures, mechanical properties and wear resistance vary according to the Cr metal-content. MoS2 tribological properties are improved with a Cr metal dopant in the MoS2 matrix. The optimum Cr content varies with different counterbodies. Showing especially good tribological properties were MoS2–Cr8% coating sliding against either AISI 1045 steel or AA 6061 aluminum alloy, and MoS2–Cr5% coating sliding against bronze. Enhanced tribological behavior included low wear depth on coating, low wear width on counterbody, low friction coefficients and long durability.  相似文献   

16.
T. Haque  A. Morina  A. Neville  R. Kapadia  S. Arrowsmith 《Wear》2009,266(1-2):147-157
Diamond-like carbon (DLC) coatings have became accepted non-ferrous coatings for automotive tribo-components as they offer excellent tribological properties resulting in improved fuel economy and reduced dependence on existing lubricant additives which can be harmful to catalytic converters and ultimately to the environment. Obtaining optimum durability (wear) as well as high fuel economy (low friction) using DLC-coated parts relies in part on the compatibility between surface and lubricant additives. The objective of this study is to understand the role of friction modifiers and antiwear additives on the durability of DLC coating under boundary lubrication conditions. Experiments were performed using a pin-on-plate tribotester using plates coated by 30 at.% hydrogen containing DLC (HDLC) sliding against cast iron (CI) pins. The physical observation of the wear scar, formed on the HDLC coating by low friction and/or antiwear additives, was performed using both optical and scanning electron microscopes. X-ray photoelectron spectroscopy analysis was performed on the tribofilms to help to understand the tribochemical interactions between oil additives and the HDLC coating. Based on the physical observations and tribochemical analysis of the wear scar, the mechanisms of failure/wear of the HDLC coating are proposed and the requirement for designing optimal additive packages for the HDLC coating is discussed.  相似文献   

17.
The presence of hard contaminants in lubrication can lead to the premature failure of rolling bearings. To reduce the negative effect of such contaminants, hard carbon-based coatings (diamond-like carbon; DLC) can be applied to the surfaces of steel bearings. DLC coatings generate a low friction and a high sliding wear resistance to enhance the tribological properties and improve the durability of running components. This work explores the merits of DLC coatings for use in very demanding applications, such as in highly contaminated environments. The wear properties of DLC-coated bearing rollers were evaluated by comparing them with uncoated rollers. The degree of wear found on the coated rollers was serious, especially under relatively high contaminant concentrations. The three-body abrasive wear produced a relatively coarse scoring of the coating surface, which caused the corresponding disc to suffer more damage than the disc running against an uncoated roller under the same operating conditions. The results indicate that supposedly wear-protective coatings cause even more damage to running surfaces once they have been broken up by hard contaminants, and highlight the importance of keeping the bearing coating intact. In practise, it is important to eliminate contaminants from the lubricant of rolling bearings, in particular for bearings with a DLC anti-wear coating.  相似文献   

18.
C.H. Hager Jr.  J.H. Sanders  S. Sharma 《Wear》2008,265(3-4):439-451
Plasma-sprayed Al–bronze or CuNiIn coatings are often applied to protect against fretting wear and extend the operational life of Ti-alloy compressor blades in turbine engines. In order to develop a fundamental understanding of how these coating systems perform under gross slip fretting conditions, bench level fretting wear tests were conducted at room temperature to simulate cold engine startup. Alternative coatings such as plasma-sprayed molybdenum and nickel were also evaluated because of their potential for reducing fretting wear under certain simulated engine conditions. The combination of scanning electron microscopy (SEM), surface profilometry, surface chemistry (EDS), and friction analysis were used to study coating performance and evaluate the interfacial wear mechanisms. In this study, it was determined that all coatings caused significant damage to the mating Ti6Al4V surfaces and that the wear mechanisms were all similar to those of the uncoated baseline case.  相似文献   

19.
Abstract

The use of surface coatings is emerging as one of the most important approaches in reducing friction and wear in various tribological applications. Even though single layer coatings have a wide range of applications, the performance of the single layer alone may not always be adequate to meet the desired tribological property requirements. Hence, coatings consisting of multilayers to meet different property requirements in demanding applications are required. In this study, the tribological properties of a graded composite multilayer coating, with a specific layer sequence of MoS2/Ti–MoS2/TiBN–TiBN–TiB2–Ti deposited on tool steel substrate, have been investigated at temperatures of 40 and 400°C respectively. The experimental results from the tests at 40°C have shown that the friction coefficient value ranges between 0·02 and 0·034. It was found that the deposition parameters influenced the friction and durability of the coatings. Higher substrate bias was found to result in higher friction, and the coating deposited at high substrate bias and low N2 flow showed the lowest durability. The friction coefficient and durability of the coatings were found to be highly dependent on temperature. At high temperature, the friction coefficient increases almost threefold, and the durability decreases significantly.  相似文献   

20.
Aromatic thermosetting polyester (ATSP)- and polytetrafluoroethylene (PTFE)-blended composites have been shown to exhibit improved tribological performance with low wear and low friction. In this article, pure ATSP films were coated on aluminum substrates and tested as a potential protective tribological coating. The tribological performance of this coating was tested against steel, using pure sliding sphere-on-disk experiments. A fluoroadditive powder (solid lubricant) was also added to further enhance the ATSP film wear and friction properties. For comparison, a commercially available PTFE-based coating was tested under the same conditions. Results show that the ATSP/fluoroadditive film has comparable coefficient of friction to the commercial coating, but significantly lower wear. Surface analysis techniques were employed to investigate the low-friction and low-wear mechanisms seen with the ATSP/fluoroadditive. Specifically TOF-SIMS depth-profiling showed that there is a high density of fluorine element within the wear track and penetrates well below the surface of the wear track.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号