首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pt–Ni/CNTs catalysts are prepared by different impregnation techniques and different reduction methods (H2, HCHO, and KBH4) for the selective hydrogenation of cinnamaldehyde (CMA) to hydrocinnamaldehyde (HCMA) and investigated by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and temperature programmed reduction (H2-TPR) techniques. The results show that the catalytic selectivity and activity of the Pt–Ni/CNTs catalysts would significantly be improved by using KBH4 as a reducing agent, due to the electronic synergetic effect of Pt–Ni–B, and 96% for conversion of CMA and 88% for selectivity of HCMA are obtained over Pt–Ni/CNTs catalyst reduced by KBH4. Furthermore, the hydrogenation rate of CMA and selectivity of CMA to HCMA over Pt–Ni/CNTs catalyst are significantly improved in the presence of trace base or acid promoters again. The best result (92% for conversion of CMA and 96% for selectivity of HCMA) is obtained when NaOAc is used as base promoter.  相似文献   

2.
The effect of rare earths (Sm, Pr, Ce, Nd, and La) on the hydrogenation properties of chloronitrobenzene (CNB) over Pt/ZrO2 catalyst was studied in ethanol at 303K and normal pressure. The results show that the hydrogenation of CNB can be carried out over Pt/ZrO2 catalyst. The order of the hydrogenation rates of CNB is p>m>o, and the yield of chloroaniline (CAN) is p>o>m. The specific rate constant turnover frequency (TOF) expressed per surface Pt atom increases when the platinum catalyst is modified by rare earth. The conversion of CNB is >99% and CAN is the main product in the hydrogenation of CNB over PtM/ZrO2 catalysts. The PtPr/ZrO2 catalyst shows the best selectivity of CNB to CAN: 89.4mol% for o-CAN, 94.6mol% for m-CAN and 95.1mol% for p-CAN.  相似文献   

3.
CH4/CO2 reforming over Pt/ZrO2, Pt/CeO2 and Pt/ZrO2 with CeO2 was investigated at 2 MPa. Pt/ZrO2, which shows stable activity under 0.1 MPa, and Pt/CeO2 showed gradual deactivation with time at the high pressure. The deactivation was suppressed drastically on Pt/ZrO2 with CeO2 prepared by different impregnation order (co-impregnation of Pt and CeO2 on ZrO2, and consecutive impregnation of Pt and CeO2 on ZrO2). The amount of coke deposition was found insignificant and similar among all the catalysts (including Pt/ZrO2 and Pt/CeO2). Catalytic activity after the reaction for 24 h was in agreement with Pt particle size after the reaction for same period, indicating that the difference of the catalytic stability is mainly dependent on the extent of Pt aggregation through catalyst preparation, H2 reduction, and the CH4/CO2 reforming. Pt aggregation and the amount of coke deposition were least pronounced on (Pt–Ce)/ZrO2 prepared by impregnation of CeO2 on Pt/ZrO2 and the catalyst showed highest stability.  相似文献   

4.
This work reports, formation of benzene from anisole via hydrodeoxygenation process using vapour phase fixed bed reactor. The surface properties of bimetallic catalysts such as textural properties, acidic, and Pt/Ni dispersion has established by various characterization techniques. The reaction was carried out at 370 and 420 °C with space velocity 3.3 & 6.6 h??1, over acidic and non-acidic supported mono and bimetallic catalysts. The optimum conversion and selectivity was observed at 420 °C and WHSV?=?3.3 h??1 for all mono and bimetallic catalysts. Pt/Ni/Al-SBA-15 acidic bimetallic catalyst shows maximum anisole conversion 59% with benzene selectivity 37% under atmospheric pressure, due to the more acidic centres and high dispersion of Pt/Ni species on the bimetallic catalyst, enhance the anisole conversion; this was proved by NH3-TPD and HR-TEM analysis. The acidic Pt/Ni bimetallic catalyst shows higher anisole conversion as compared to the mono metallic Pt/Ni catalysts and it works predominantly through demethylation and hydrogenolysis reaction pathway.  相似文献   

5.
The effect of metal promoters on the activity and selectivity of tungstated zirconia (8 wt.% W) for n-hexadecane isomerization in a trickle bed continuous reactor is studied by using different metals (Pt, Ni, and Pd) and, in one case, by varying metal loading. Platinum is found to be the best promoter. The effect of hydrogen reduction is investigated using platinum-promoted tungstated zirconia catalysts (Pt/WO3/ZrO2, 0.5 wt.% Pt and 6.5 wt.% W). Pretreatment at temperatures between 300 and 400°C for 3 h in hydrogen is found to be slightly beneficial for achieving high yields of isohexadecane. A platinum promoted sulfated zirconia (Pt/SO4/ZrO2) is compared with a Pt/WO3/ZrO2 catalyst for the hydroisomerization of n-hexadecane in the same reactor at the same n-hexadecane conversion. The former is a good cracking catalyst and the latter is suitable for use as a hydroisomerization catalyst. In a 27-ml microautoclave reactor, studies of the hydroisomerization and hydrocracking of two Fischer–Tropsch (F–T) wax samples are carried out. Severe cracking can be effectively suppressed using a Pt/WO3/ZrO2 catalyst so as to obtain branched isomers in the diesel fuel or lube-base oil range.  相似文献   

6.
Hydrogen production from ethanol reforming was investigated on bimetallic PtNi catalysts supported on CeO2/Al2O3. Pt content was varied from 0.5 to 2.5 %. Physico-chemical characterization of the as-prepared and H2-reduced catalysts by TPR, XRD and XPS showed that Pt phase interacted with the Ni and Ce species present at the surface of the catalysts. This interaction leads to an enhancement of the reducibility of both Ni and Ce species. Loadings of Pt higher than 1.0 wt% improved the activity and stability of the Ni/CeO2–Al2O3 catalyst in ethanol steam reforming, in terms of lower formation of coke, C2 secondary products and a constant production of CO2 and H2. The amount and type of carbon deposited on the catalyst was analyzed by TG–TPO while the changes in crystalline phases after reaction were studied by XRD. It was found that for Pt contents higher than 1 wt% in the catalysts, a better contact between Pt and Ce species is achieved. This Pt–Ce interaction facilitates the dispersion of small particles of Pt and thereby improves the reducibility of both Ce and Ni components at low temperatures. In this type of catalysts, the cooperative effect between Pt0, Ni0 and reduced Ce phases leads to an improvement in the stability of the catalysts: Ni provides activity in C–C bond breakage, Pt particles enhance the hydrogenation of coke precursors (CxHy) formed in the reaction, and Ce increases the availability of oxygen at the surface and thereby further enhances the gasification of carbon precursors.  相似文献   

7.
Monometallic and bimetallic catalysts (Pt, Ni, and Pt‐Ni) with single support (Al2O3, TiO2) and composite support (CeO2/Al2O3, CeO2/TiO2) were prepared and tested for water‐gas shift reaction in a tubular quartz reactor. Syngas and steam with different steam‐to‐carbon ratios served as feedstock. The operating pressure was fixed while the reaction temperature was varied. The measured results indicated that the monometallic Ni/Al2O3 catalyst exhibits the lowest CO conversion and H2 yield as compared with other catalysts. About the same CO conversion can be obtained from Pt and Pt‐Ni catalysts with single or composite support. However, higher H2 yield can be achieved from the TiO2‐supported catalyst compared with those supported by Al2O3. The experimental data also indicated that good thermal stability can be reached for the Pt‐based catalysts studied.  相似文献   

8.
Ni and Pt catalysts supported on α-Al2O3, α-Al2O3-ZrO2 and ZrO2 were studied in the dry reforming of methane to produce synthesis gas. All catalytic systems presented well activity levels with TOF (s−1) values between 1 and 3, being Ni based catalysts more active than Pt based catalysts. The selectivity measured at 650 °C, expressed by the molar ratio H2/CO reached values near to 1. Concerning stability, Pt/ZrO2, Pt/α-Al2O3-ZrO2 and Ni/α-Al2O3-ZrO2 systems clearly show lower deactivation levels than Ni/ZrO2 and Ni or Pt catalysts supported on α-Al2O3. The lowest deactivation levels observed in Ni and Pt supported on α-Al2O3-ZrO2, compared with Ni and Pt supported on α-Al2O3 can be explained by an inhibition of reactions leading to carbon deposition in systems having ZrO2. These results suggest that ZrO2 promotes the gasification of adsorbed intermediates, which are precursors of carbon formation and responsible for the main deactivation mechanism in dry reforming reaction.  相似文献   

9.
A novel Pt4ZrO2/C catalyst was prepared and compared with 20 wt.% Pt/C in terms of the sintering resistance and corrosion resistance. To evaluate their sintering resistance and corrosion resistance properties, an accelerated ageing test (AAT) was performed. The catalysts before and after AAT were characterized by cyclic voltammetry (CV), rotating disk electrode (RDE) and X-ray diffraction (XRD). After AAT, the dissolution rate of Pt and Zr in H3PO4 media (105 wt.%, 204 °C) was characterized by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The electrochemical area (ECA) changes of thin film electrodes based on Pt4ZrO2/C and Pt/C catalysts were also evaluated using continuous CV sweep technique. All the results showed that Pt4ZrO2/C has higher sintering resistance and corrosion resistance than Pt/C. ‘Anchor effect’ is proposed to explain the enhanced effect of ZrO2 in Pt4ZrO2/C binary catalyst compared with Pt/C that contain platinum alone.  相似文献   

10.
Bitter  J.H.  Seshan  K.  Lercher  J.A. 《Topics in Catalysis》2000,10(3-4):295-305
X-ray absorption spectroscopy (XAS) has proven to be a very useful technique in characterizing metal-based catalysts exposed to extreme operating conditions. The technique allows in situ evaluation of structural parameters (XAFS) and electronic properties (XANES). The elucidation of the nature and state of Pt-based catalysts in dry reforming of methane with carbon dioxide is presented as case study to show the contribution and potential of XAS to explore property/performance relationships for heterogeneous catalysts. Pt/ZrO2 is an active and stable catalyst for the reaction between CH4 and CO2 to synthesis gas (H2/CO). The activity and stability of the catalyst is strongly influenced by the catalyst pretreatment (calcination/reduction). The combination of hydrogen chemisorption, IR spectroscopy, XPS and XAS is shown to be suitable to track the changes of the state of the catalyst. In particular, it will be demonstrated, how XAFS helped to correctly attribute variations in the chemisorptive properties of Pt/ZrO2 after severe temperature treatment to partial and reversible decoration of the small Pt particles with fragments of the oxide support. In situ tracking of the reduction of the catalysts by XANES additionally helped to semiquantitatively assess the partial reduction of the ZrO2. Finally, XANES helped to demonstrate that CO2 exposure under these severe conditions did not lead to detectable levels of surface oxidation of Pt. Based on XANES, IR spectroscopy and kinetic measurements it is concluded that in dry reforming activation of methane occurs on Pt, while CO2 is activated on the support and the two entities react at the metal–support interface. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Synthesis of carbon-supported PtCo/C using micro-emulsion method including simultaneous procedure and sequential procedures in both acid and alkaline media was reported. UV-vis and electron microscopy were used to characterize the formation, surface morphology and distribution of PtCo nanoparticles. Crystallite structure of catalysts was analyzed from XRD patterns. Catalytic properties of PtCo/C catalysts synthesized were compared with commercial Pt/C using RDE based on both mass activity (MA) and specific activity (SA). PtCo/C catalysts prepared in both acidic and basic conditions showed better performance than commercial Pt/C catalyst. High-temperature heat treatment was found useful only to PtCo/C by sequential procedure. The peroxide yield was also explored using RRDE technique. The H2O2 yield results were correlated with SA and R values (ratio of charge transferred about Co and Pt on the surface of catalyst) obtained from CVs in 1 M KOH solution. A sacrificial Co oxidized effect on impediment of adsorption of OH may cause higher catalytic properties and higher H2O2 yield to Pt base alloy catalysts.  相似文献   

12.
A plasma/catalyst hybrid reactor was designed to overcome the limits of plasma and catalyst technologies. A two-plasma/catalyst hybrid system was used to decompose VOCs (toluene) and NOx at temperature lower than 150 °C. The single-stage type (Plasma-driven catalyst process) is the system in which catalysts are installed in a non-thermal plasma reactor. And the two-stage type (Plasma-enhanced process) is the system in which a plasma and a catalyst reactor are connected in series. The catalysts prepared in this experiment were Pt/TiO2 and Pt/Al2O3 of powder type and Pd/ZrO2, Pt/ZrO2 and Pt/Al2O3 which were catalysts of honeycomb type. When a plasma-driven catalyst reactor with Pt/Al2O3 decomposed only toluene, it removed just more 20% than the only plasma reactor but the selectivity of CO2 was remarkably elevated as compared with only the plasma reactor. In case of decomposing VOCs (toluene) and NOx using plasma-enhanced catalyst reactor with Pt/ZrO2 or Pt/Al2O3, the conversion of toluene to CO2 was nearly 100% and about 80% of NOx was removed. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

13.

Abstract  

The oxidation of methane over zirconia-supported Pd, Ir, and Pt catalysts at low temperatures under an oxidizing atmosphere and the effect of SO2 on this reaction were investigated. An Ir–Pt/ZrO2 catalyst exhibited high activity and low deactivation by SO2. Characterization of the catalyst indicated the presence of a highly oxidized Pt species that was stabilized by the addition of Ir.  相似文献   

14.
The activity, selectivity, and methanol tolerance of novel, carbon supported high-metal loading (40 wt.%) Pt/C and Pt3Me/C (Me = Ni, Co) catalysts for the O2 reduction reaction (ORR) were evaluated in model studies under defined mass transport and diffusion conditions, by rotating (ring) disk and by differential electrochemical mass spectrometry. The catalysts were synthesized by the organometallic route, via deposition of pre-formed Pt and Pt3Me pre-cursors followed by their decomposition into metal nanoparticles. Characteristic properties such as particle sizes, particle composition and phase formation, and active surface area, were determined by transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. For comparison, commercial Pt/C catalysts (20 and 40 wt.%, E-Tek, Somerset, NJ, USA) were investigated as well, allowing to evaluate Pt loading effects and, by comparison with the pre-cursor-based catalyst with their much smaller particle sizes (1.7 nm diameter), also particle size effects. Kinetic parameters for the ORR were evaluated; the ORR activities of the bimetallic catalysts and of the synthesized Pt/C catalyst were comparable and similar to that of the high-loading commercial Pt/C catalyst; at typical cathode operation potentials H2O2 formation is negligible for the synthesized catalysts. Due to their lower methanol oxidation activity the bimetallic catalysts show an improved methanol tolerance compared to the commercial Pt/C catalysts. The results indicate that the use of very small particle sizes is a possible way to achieve reasonably good ORR activities at an improved methanol tolerance at DMFC cathode relevant conditions.  相似文献   

15.
The water–gas shift (WGS) reaction of Pt/Ce0.6Zr0.4O2 catalyst was studied, as well as the reference catalysts Pt/CeO2 and Pt/ZrO2. In situ electronic conductivity measurements under reactive atmosphere show that surface oxygen vacancies of Pt/Ce0.6Zr0.4O2 diffuse into the bulk materials at the temperature typical for the operation of WGS reaction, i.e., bellow 623 K. Compared with Pt/CeO2, it was found that the oxygen storage capacity (OSC) was higher for Pt/Ce0.6Zr0.4O2 catalyst. Pt/Ce0.6Zr0.4O2 shows a markedly higher CO conversion rate than Pt/CeO2 and Pt/ZrO2 catalysts, which was interpreted by more active oxygen species available and higher coke resistance.  相似文献   

16.
An electrochemical method was developed to deposit platinum (Pt) and nickel (Ni) nanoparticles on multi-walled carbon nanotubes (MWCNTs) through a three-step process. X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) show the alloy formation for Pt and Ni with a ratio of 1:1. The presence of Pt(0), Ni(0), Ni(OH)2, NiOOH and slight NiO was deduced from XPS data. Electrocatalytic properties of the resulting PtNi/MWCNT electrode for methanol oxidation reaction were investigated. Compared with Pt/MWCNT, an appreciably improved resistance to CO poisoning was observed for the PtNi/MWCNT electrode, which was interpreted by a mechanism based on the bifunctional catalysis. The successful preparation of PtNi/MWCNT nanocomposites opens a new path for an efficient dispersion of the promising electrocatalysts in the direct methanol fuel cells.  相似文献   

17.
This work presents a facile and efficient approach to modulate morphology and textural properties of ZrO2 through ammonium fluoride‐urea assisted hydrothermal (FUAH) method with diverse parameters including molar ratio of NH4F to zirconium (nf/z), molar ratio of urea to zirconium (nu/z), hydrothermal temperature (Thydroth), and hydrothermal time (thydroth), which serve as support for supported Ni catalysts toward dry reforming of methane (DRM) to produce synthesis gas. The plausible mechanism for forming ZrO2 supports with different morphologies under diverse hydrothermal conditions was proposed. Various characterization techniques were employed to investigate the effect of preparation parameters on the morphology and textural properties of the as‐synthesized ZrO2 supports, as well as to reveal the structure‐performance relationship of the Ni/ZrO2 catalysts prepared by L‐arginine assisted incipient wetness impregnation method toward DRM reaction. The developed supported Ni catalyst on hierarchically structured ZrO2 with pinecone shape prepared by FUAH method (Ni/ZrO2‐FUAH) demonstrates higher activity and stability for DRM than that on ZrO2 prepared by traditional hydrothermal method (Ni/ZrO2‐H). The higher activity of Ni/ZrO2‐FUAH than Ni/ZrO2‐H can be ascribed to the higher Ni dispersion, smaller Ni crystalline size, and enhanced reducibility of NiO, significantly affected by morphology of support, as well as the higher coke‐resistance catalytic stability can be ascribed to smaller Ni particle size and stronger Ni‐support interaction, strongly dependent on morphology and textural properties of ZrO2 supports that affected by FUAH process parameters. The outstanding catalytic performance of the developed Ni/ZrO2‐FUAH catalyst allows it to be a promising candidate for synthesis gas production through DRM reaction. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2900–2915, 2017  相似文献   

18.
《Catalysis communications》2011,12(15):1165-1170
Dry reforming of methane has been studied over Co/ZrO2 catalysts promoted with different metal additives (La, Ce, Mn, Mg, K) aiming to improve the performance of the catalysts and increase their resistance to coking. Scanning electron microscopy studies and different activity levels of the catalysts clearly show that the type of the promoter significantly affected the metal dispersion properties and catalytic performances of Co/ZrO2 catalysts. La-modified catalyst exhibited high stability, but moderate activity. It showed no severe coke deposition. Ce-doped Co/ZrO2 displayed the highest activity among all the catalysts prepared and had a very limited activity loss.  相似文献   

19.
Rational engineering of noble metal/transition metal bimetallic catalysts is considered as an effective way to constructing synergistic effect between adsorbed oxygen and hydroxyl for enhanced catalytic formaldehyde oxidation. Herein, we developed a Pt–Ni bimetallic catalysts loading on γ-Al2O3 support for room-temperature formaldehyde oxidation. Catalytic experiment results showed that the conversion rate was >97% with a >100 h stability. Several noble metals (Pd, Au, and Ag) were compared to identify the activity effect in formaldehyde oxidation. The activity and stability test in different atmospheres and in situ infrared test suggested that the PtNi/γ-Al2O3 has the best activity and stability. At a meantime, the results also demonstrated that Pt sites motivate more surface adsorbed oxygen through activating ambient oxygen molecules, while the neighboring Ni atoms contribute to adsorbed hydroxyl, thereby offering sustainable activity. The high efficiency and stability of PtNi/γ-Al2O3 catalysts for formaldehyde oxidation could be a promising candidate for air purification.  相似文献   

20.

Abstract  

PtNi bimetallic and Ni monometallic catalysts supported on HY–Al2O3, HX–Al2O3, ZSM-5–Al2O3, USY–Al2O3, Beta–Al2O3 and Al2O3 were prepared and evaluated for the hydrogenation of maleic anhydride in the temperature range of 40–150 °C. Results from flow reactor studies showed that supports strongly affected the catalytic properties of different bimetallic and monometallic catalysts. The results showed that the HY–Al2O3 support exhibited the highest activity and selectivity. Using NiPt/Al2O3–HY catalyst and performing the reaction, it was possible to carry out the lowest reaction temperature ever carried at 100% conversion. Adding a small amount of Pt (0.5) to the Ni (5%)/Al2O3–HY catalyst that is effective for increasing the selectivity and activity. We also found that PtNi is an efficient catalyst for the one-pot conversion of maleic acid into succinic acid with 100% conversion at 40 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号