首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
朱高  王培康  宋慧慧 《计算机工程》2012,38(17):235-237,241
针对超分辨率图像重建的求解病态性问题,从正则化求解的角度构建数据保真项和正则项,提出一种新的数据融合方法。讨论已有的数据融合方法,利用像素领域和帧间信息控制奇异点,考虑边缘区域的变差权值,避免重建图像的边缘区域过于平滑。实验结果表明,该方法能够提高重建图像质量,具有较好的鲁棒性。  相似文献   

2.
超分辨率图像重建技术就是通过融合多幅变形、模糊、有噪、频谱混叠的低分辨率降质图像(或视频序列)来重建一幅高质量高分辨率图像.MAP估计算法是一种广泛使用的统计重建方法.针对标准的MAP算法引入了自适应概念,引入了图像自适应加权系数矩阵;据此给出一种基于自适应双边全变差的图像超分辨率重建算法,该方法不仅能在图像超分辨率重建过程中抑制噪声,而且能锐化图像中的边缘信息;建立了自适应重建模型并用梯度下降法推导出迭代计算公式.实验表明,该算法在收敛性和精确性上都达到了较好的效果.  相似文献   

3.
超分辨率图像重建是用同一景物的若干低分辨率图像通过数字图像处理技术获取其高分辨率图像的一种技术.介绍了基于正则化方法的超分辨率图像重建的研究现状和以正则化为基础的几种重建方法在近几年的研究和发展趋势.在此基础上,实现了一种遥感图像的正则化超分辨率重建算法,实验验证了方法的有效性.  相似文献   

4.
超分辨率图像复原的目的是从几幅包含有相同观测区域的图像序列中重建更高分辨率的图像。一般的超分辨率算法没有考虑文本图像的分段连续性,因此有可能丢失笔画边缘处的细节信息。双边总变分正则算法具有很好的边缘保持能力,因此可以应用到文本图像的超分辨率恢复。本文根据汉字的字符结构特点,对双边总变分正则算法进行了改进,根据汉字的笔画组成特征。提出新的正则项。该方法由于充分地考虑了汉字文本图像的结构特征,因此能够很好地保持汉字的笔画的尖锐边缘。实验也证明了使用本文所提出的BTVCH算法获得的超分辨率文本图像可以获得最高的字符识别率。  相似文献   

5.
针对曝光量不同的序列图像超分辨率重建问题,提出一种耦合光度配准的双边全变差正则化MAP超分辨率重建算法。首先计算感兴趣区域图像的方向梯度直方图(HOG)并以此为匹配的特征,其次采用直方图匹配的方法估算序列图像之间的光度映射函数,最后采用双边全变差正则化的超分辨率重建算法进行重建。通过计算重建图像的平均梯度、标准差及图像对比度发现,该算法能够有效提高重建图像的细节信息,并能有效减小重建图像间的亮度差异,提高图像对比度。  相似文献   

6.
采用非线性扩散模型建立超分辨率图像重构的偏微分方程,利用各向异性扩散方程的方向选择平滑的特性,在重构高分辨率图像的同时能够很好地消除系统噪声,保持细节信息。实验结果表明,该方法有效地提高了重构的图像质量,在视觉观察和数值评价上都优于原有正则化方法,并且对不同噪声水平的图像具有很好的鲁棒性。  相似文献   

7.
刘刚  翟春伟  戴明 《计算机工程》2011,37(23):192-194
不精确的配准参数会使图像重建结果不理想.为此,提出一种基于权值的自适应正则化超分辨率算法.自适应局部区域权值根据该区域的可靠性进行自适应运算,利用分水岭分割将参考图像分成不同区域,由此提升重建质量.对真实视频序列的实验结果证明该算法有效.  相似文献   

8.
压缩图像空时自适应正则化超分辨率重建   总被引:1,自引:0,他引:1       下载免费PDF全文
所谓超分辨率(SR)技术就是由低分辨率(LR)图像序列来重建高分辨率(HR)图像的技术,而基于压缩图像的SR技术正成为当前研究的热点。为了提高压缩图像的重建质量,在正则化理论的基础上,通过利用比特流中的信息,提出了一种新颖的空时自适应超分辨率重建算法,该算法先利用正则化代价函数控制时域数据和空域先验信息之间的平衡,使正则化参数在SR重建过程中得到自适应地调整,然后利用迭代梯度下降法进行超分辨率重建。仿真实验表明,该自适应算法比采用传统算法重建的图像的主、客观质量有一定的提高,适合压缩图像的应用。  相似文献   

9.
丁静  王培康 《计算机应用》2010,30(11):3005-3007
在正则化超分辨率重建框架下,基于M-估计理论和双边滤波思想,建立了一种鲁棒的超分辨率重建统一能量泛函。该能量泛函融合了M-估计的鲁棒性处理机制和双边滤波的双重异性加权机制,提高了算法的鲁棒性和边缘保持特性。鉴于采用最小二乘估计的CLS算法和采用最小一乘估计的Farsiu重建算法在边缘保持特性方面存在的不足,在算法实现时选用了Huber稳健M-估计。不论是视觉效果还是峰值信噪比(PSNR),实验结果都表明该算法的有效性。  相似文献   

10.
一种空间自适应正则化MAP超分辨率重建算法   总被引:1,自引:0,他引:1  
提出一种简单、通用的基于正则化技术的自适应MAP超分辨率重建算法。与以往算法不同,该方法引入了局部空间自适应正则化参数,弥补了传统算法对图像自身的局部特性缺乏考虑的不足。算法通过迭代的方式,利用中间重建结果不断对正则化参数进行更新,并最终得到重建图像。实验结果表明,该方法可以根据不同图像序列的特点以及图像的局部灰度特性,自适应地确定相应的正则化参数,并找到最优解,有效地保护了高分辨率图像的细节信息。  相似文献   

11.
吴骅  胡超  韦穗 《微机发展》2007,17(3):125-127
实现了一种基于TV正则化的图像盲恢复算法。采用了交替迭代算法,保证迭代中能同时恢复出图像以及点扩张函数,并在每步迭代中自适应调整其扩散参数。实验结果也显示了迭代过程的收敛以及鲁棒性(特别是对于非连续的模糊),而且图像和点扩张函数可以在很高的噪声级下恢复。  相似文献   

12.
刘亚男  杨晓梅  陈超楠 《计算机科学》2016,43(5):274-278, 307
从退化的低分辨率图像重建得到高分辨率图像的本质是一病态逆问题,针对该问题,通过添加正则项进行处理。在使用传统的全变分(TV)的基础上,添加了分数阶全变分(FOTV)作为另一正则项来约束解空间。分数阶全变分正则项的使用可以更好地重建图像的细节纹理信息,弥补了全变分算子在平滑区域易出现阶梯效应的缺陷。利用交替方向乘子(ADMM)算法将问题划分为子问题,将全变分和分数阶全变分算子作为循环矩阵,通过傅里叶变换将其对角化,降低了计算的复杂程度。实验结果表明,与已有的方法相比,所提方法有效地避免了阶梯效应的产生,较好地保持了细节信息,并且具有更好的峰值信噪比(PSNR)和结构相似度(SSIM)。  相似文献   

13.
任福全  邱天爽 《自动化学报》2015,41(6):1166-1172
针对图像去模糊问题, 采用二阶广义全变差作为修复图像的正则项构建恢复模型, 并针对重建模型的高阶与非光滑特性, 给出了基于分裂Bregman 迭代的快速算法. 实验结果表明, 该模型和数值算法能够较好地恢复被噪声和模糊污染的图像, 同时可以很好地保留图像的纹理和细节信息.  相似文献   

14.
针对传统小波变换在图像融合过程中出现边缘模糊、图像失真等问题,提出了一种基于超分辨率的多聚焦图像融合算法。对所有的源图像进行了双三次插值的单帧超分辨率处理,增强源图像对比度等细节信息,采用的源图像为分别进行左右聚焦处理的同一场景中的两幅图像。对这些高分辨率源图像实现了平稳小波变换(SWT),并将源图像划分为四个子带。针对这些子带所包含源图像细节信息混乱、结构信息冗余等问题,采用了主成分分析(PCA),分别选取源图像各子带的最大信噪比进行图像融合。利用逆平稳小波变换(ISWT)对融合子带进行重构,得到高质量融合图像。为了评定融合后图像的质量,选择了无参考图像和全参考图像的两种度量方法来检测融合后的图像质量。经实验结果表明,提出的算法克服了传统小波变换算法在图像融合上的缺点,具有边缘清晰、视觉感知好、清晰度好、失真小等优点。  相似文献   

15.
宋景琦  刘慧  张彩明 《计算机科学》2016,43(Z11):210-214
医学图像在病人的诊疗过程中具有重要的参考意义。然而,受设备分辨率和放射剂量的影响,现有设备获得的医学图像分辨率较低,容易对最终诊疗结果产生不利影响。针对这个问题,提出了一种自适应块聚类的医学图像超分辨重建算法。首先,该算法对图像进行四叉树分解,自适应地获得不同尺度的图像块;然后,通过图像块特征提取和聚类处理得到各个不同尺度图像块的聚类中心;最后,利用聚类中心和相应的回归系数重建出高分辨率图像。实验结果表明,所提方法在医学图像重建效果和峰值信噪比、结构相似性对比等方面能够取得更好的效果。  相似文献   

16.
基于总变差的图像放大和增强方法   总被引:6,自引:0,他引:6  
利用小波的多分辨分析和总变差极小原理,提出了一种实现图像放大和增强的新方法。该方法把原图像作为放大图像的小波子带,对放大图像强加了一种小波系数型的限制。放大图像利用图像总变差极小模型进行正则化。经求变分产生带限制的非线性扩散方程作为总变差极小的必要条件,求解偏微分方程得到增强的放大图像。对人工合成图像、医学MRI心脏切片和人物图像进行了实验。实验结果说明该方法同时实现图像放大和增强的有效性。  相似文献   

17.
L1范数的总变分正则化超分辨率图像重建   总被引:1,自引:0,他引:1  
超分辨率图像重建技术能够综合利用多帧离散图像、多组视频序列、或单帧图像与训练样本图像之间的互补信息,重建质量更好、空间分辨率更高的图像数据,弥补原有图像数据空间分辨率的不足,提高图像空间解像力和清晰度。介绍了基于正则化方法的超分辨率图像重建的研究现状和以正则化为基础的几种重建方法在近几年的研究和发展趋势。在此基础上,采用L1范数对重建图像保真度进行约束,利用总变分正则化克服重建问题的病态性,有效地保持了图像的边缘。实现了对包含文字信息的图像的正则化超分辨率重建,实验验证了方法的有效性。  相似文献   

18.
针对超大分辨率图像的填充问题提出一种图像分割与基于队列的填充算法。该算法分为图像分割与图像填充2个部分,适用于超大分辨率图像,特别是盆地模拟中的地质图的填充,能克服一般算法在处理大分辨率图像时存在的效率较低、精度不高和资源占用多等缺陷。将该算法应用到盆地模拟工程实践中,取得了较好的填充效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号