首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report intractable meningitis and intracranial abscess in a diabetic patient, arising from sphenoid sinusitis and osteomyelitis caused by Candida species. Magnetic resonance images (MRI) revealed the sinusitis and osteomyelitis with direct invasion of the sellar region and clivus, subsequently intracranial abscess.  相似文献   

2.
Recently, we have shown that an EGF-R-mutant lacking the autophosphorylation sites phosphorylates Shc and retains mitogenic activity. In this report, we have shown that in these cells, in response to EGF, Ras is fully activated with formation of the tyrosine-phosphorylated Shc-Grb2-mSOS complex without the receptor. This pointed out the importance of Shc in EGF-induced Ras activation. To investigate the mechanism of tyrosine phosphorylation of Shc by EGF-R, we carried out in vitro kinase assays using immunoprecipitated EGF-R and bacterially-expressed Shc proteins as substrates. The EGF-R phosphorylated Shc, but not the Shc SH2 mutant, lacking binding ability for phosphotyrosine. This suggests that intact Shc SH2 is essential for the full-length Shc to become phosphorylated, probably by inducing a conformational change in Shc. Thus a Shc SH2 peptide may inhibit competitively Shc phosphorylation. We microinjected the Shc SH2 domain into NIH3T3 cells overexpressing the EGF-R. Microinjected Shc SH2 greatly suppressed EGF-induced DNA synthesis. But microinjection of neither the Shc SH2 mutant nor PLC-gamma 1 SH2 had any effect. This suppressing effect was rescued by comicroinjection of the full-length Shc, suggesting Shc SH2 specifically suppressed the Shc pathway. Thus we concluded Shc phosphorylation is crucial, whereas receptor autophosphorylation is dispensable, in EGF-induced mitogenesis.  相似文献   

3.
4.
A filiform stenosis of the popliteal artery was examined by sonography and the reason for the cystic lesion in the arterial wall was found to be an uncommon type of cystic degeneration of the adventitia. The narrow lumen could be demonstrated by sonography and the lesion was punctured under ultrasound control. A viscous secretion was removed and the patient's claudication was cured without recourse to surgery.  相似文献   

5.
We studied the interactions of two natural thyroid hormone receptor (TR) mutants from patients with resistance to thyroid hormone (RTH) and an artificial TR mutant with a nuclear receptor corepressor, N-CoR, and a steroid receptor coactivator, SRC-1. In electrophoretic mobility shift assays, wild-type TRbeta-1 interacted with N-CoR in the absence of ligand, whereas T3 caused dissociation of the TRbeta-1/N-CoR complex and formation of TRbeta-1/SRC-1 complex. In contrast, a natural mutant (G345R) with poor T3-binding affinity formed TRbeta-1/N-CoR complex, both in the absence and presence of T3, but could not form TRbeta-1/SRC-1 complex. Another TR mutant, which bound T3 with normal affinity and containing a mutation in the AF-2 region (E457D), had normal interactions with N-CoR but could not bind SRC-1. Both these mutants had strong dominant negative activity on wild-type TR transactivation. Studies with a TR mutant that had slightly decreased T3-binding affinity (R320H) showed a T3-dependent decrease in binding to N-CoR and increase in binding to SRC-1 that reflected its decreased ligand binding affinity. Additionally, when N-CoR and SRC-1 were added to these receptors at various T3 concentrations in electrophoretic mobility shift assays, TR/N-CoR and TR/SRC-1 complexes, but not intermediate complexes were observed, suggesting that N-CoR release is necessary before SRC-1 binding to TR. Our data provide new insight on the molecular mechanisms of dominant negative activity in RTH and suggest that the inability of mutant TRs to interact with coactivators such as SRC-1, which results from reduced T3-binding affinity, is a determinant of dominant negative activity.  相似文献   

6.
The COCH gene is the only gene identified in man that causes autosomal dominantly inherited hearing loss associated with vestibular dysfunction. The condition is rare and only five mutations have been reported worldwide. All affected families showed a similar progressive hearing loss and vestibular dysfunction. Since Meniere's disease-like symptoms have also been described in some families, it was suggested that COCH mutations might be present in some patients diagnosed with Meniere's disease. In this study, using a Japanese population, we performed a COCH mutation analysis in 23 patients from independent families with autosomal dominant hearing impairment, four of whom reported vestibular symptoms, and also in 20 Meniere's patients. While a new point mutation, A119 T, was found in a patient with autosomal dominant hearing loss and vestibular symptoms, no mutations were found in the Meniere's patients. Like all other previously identified COCH mutations, the mutation identified here is a missense mutation located in the FCH domain of the protein. The current mutation is located in close spatial proximity to W117, in which a mutation (W117R) had previously been associated with autosomal dominant hearing loss. Model building suggests that, like the W117R mutation, the A119 T mutation does not affect the structural integrity of the FCH domain, but may interfere with the interaction with a yet unknown binding partner. We conclude that mutations in the COCH gene are responsible for a significant fraction of patients with autosomal dominantly inherited hearing loss accompanied by vestibular symptoms, but not for dominant hearing loss without vestibular dysfunction, or sporadic Meniere's disease.  相似文献   

7.
The zeta-chain homodimer is a key component in the TCR complex and exerts its function through its cytoplasmic immunoreceptor-tyrosine activation motif (1). The zeta-chain extracellular (EC) domain is highly conserved; however, its functional and structural contributions to the TCR signaling have not been elucidated. We show that the EC domain of the zeta homodimer is essential for TCR surface expression. To gain a more detailed structural and functional information about the zeta-chain EC domain, we applied a cysteine scanning mutagenesis to conserved amino acids of the short domain. The results showed that the interchain disulfide bridge can be displaced by seven or eight amino acids along the EC domain. The TCR signaling efficacy was dramatically reduced during peptide/MHC engagement in the zeta mutants containing the displaced disulfide bond. These signaling defective zeta mutants produced an unconventional early tyrosine phosphorylation pattern. While the tyrosine phosphorylated forms of zeta (p21 and p23) could be observed during Ag stimulation, downstream signaling events such as the generation of phospho-p36, higher m.w. forms of phospho-zeta, and phospho-zeta/ZAP-70 complexes were impaired. Together these results suggest an important function of the phylogenetically conserved zeta-EC domain.  相似文献   

8.
Defective epithelial Cl- secretion is the hallmark of the lethal genetic disease cystic fibrosis (CF). This abnormality is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a regulated Cl- channel. Since the identification of the single gene encoding CFTR, several hundred disease-causing mutations, associated with a wide variety of clinical phenotypes, have been reported. To understand the relationship between genotype and clinical phenotype, researchers have investigated how mutations in CFTR disrupt its function. Here, we review the recent progress in understanding how CF-associated mutations in CFTR produce defective Cl- channels, and discuss the implications of this knowledge for the development of therapy for CF.  相似文献   

9.
Subunits of the voltage-gated potassium channel Kv1.1 containing mutations responsible for episodic ataxia (EA), a human inherited neurological disease, were expressed in Xenopus oocytes. Five EA subunits formed functional homomeric channels with lower current amplitudes and altered gating properties compared with wild type. Two EA mutations located in the first cytoplasmic loop, R239S and F249I, yielded minimal or no detectable current, and Western blot analysis showed reduced protein levels. Coinjection of equal amounts of EA and wild-type mRNAs, mimicking the heterozygous condition, resulted in current amplitudes and gating properties that were intermediate between wild-type and EA homomeric channels, suggesting that heteromeric channels are formed with a mixed stoichiometry of EA and wild-type subunits. To examine the relative contribution of EA subunits in forming heteromeric EA and wild-type channels, each EA subunit was made insensitive to TEA, TEA-tagged, and coexpressed with wild-type subunits. TEA-tagged R239S and F249I induced the smallest shift in TEA sensitivity compared with homomeric wild-type channels, whereas the other TEA-tagged EA subunits yielded TEA sensitivities similar to coexpression of wild-type and TEA-tagged wild-type subunits. Taken together, these results show that the different mutations in Kv1.1 affect channel function and indicate that both dominant negative effects and haplotype insufficiency may result in the symptoms of EA.  相似文献   

10.
Multiple human skeletal and craniosynostosis disorders, including Crouzon, Pfeiffer, Jackson-Weiss, and Apert syndromes, result from numerous point mutations in the extracellular region of fibroblast growth factor receptor 2 (FGFR2). Many of these mutations create a free cysteine residue that potentially leads to abnormal disulfide bond formation and receptor activation; however, for noncysteine mutations, the mechanism of receptor activation remains unclear. We examined the effect of two of these mutations, W290G and T341P, on receptor dimerization and activation. These mutations resulted in cellular transformation when expressed as FGFR2/Neu chimeric receptors. Additionally, in full-length FGFR2, the mutations induced receptor dimerization and elevated levels of tyrosine kinase activity. Interestingly, transformation by the chimeric receptors, dimerization, and enhanced kinase activity were all abolished if either the W290G or the T341P mutation was expressed in conjunction with mutations that eliminate the disulfide bond in the third immunoglobulin-like domain (Ig-3). These results demonstrate a requirement for the Ig-3 cysteine residues in the activation of FGFR2 by noncysteine mutations. Molecular modeling also reveals that noncysteine mutations may activate FGFR2 by altering the conformation of the Ig-3 domain near the disulfide bond, preventing the formation of an intramolecular bond. This allows the unbonded cysteine residues to participate in intermolecular disulfide bonding, resulting in constitutive activation of the receptor.  相似文献   

11.
12.
Deletion of 13 amino acids from the carboxyl terminus of staphylococcal nuclease (WTSNase delta) results in a denatured, partially unfolded molecule that lacks significant persistent secondary structure but is relatively compact and monomeric under physiological conditions [Shortle & Meeker (1989) Biochemistry 28, 936-944; Flanagan et al. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 748-752]. Because of these and other properties of the SNase delta polypeptide, it is a useful model system for investigating the conformation of the denatured state of a protein without using extreme temperature or solvent conditions. Moreover, since the modification is a carboxyl-terminal deletion, SNase delta may also resemble a transient state of the polypeptide chain as it emerges from a ribosome prior to its folding. In the present study, we have examined the sizes and conformations of mutated forms of SNase delta, using small-angle X-ray scattering and circular dichroism spectroscopy. Seven mutated forms were studied: four with single substitutions, two with double substitutions, and one triple substitution. When present in the full-length SNase, each of these mutated forms exhibited unusual behavior upon solvent or thermal denaturation. In the case of the truncated form (SNase delta), the small-angle scattering curves of the mutated forms fall into two classes: one resembling the scattering curve of compact native nuclease and the other having features consistent with those expected for an expanded coil-like polymer. In contrast, the scattering curve of WT SNase delta exhibits features intermediate between those observed for globular proteins and random polymers. The amino acid substitutions that gave rise to compact, native-like versions of SNase delta were all of the m--type (m-substitutions are predicted to decrease the size of the denatured state). Those which gave rise to versions of SNase delta that were more extended and coil-like than WT SNase delta were of the m+ type (m+ substitutions are predicted to increase the size of the denatured state). Estimates of the residual secondary structure present in WT SNase delta, as well as both the m+ and m-substituted versions of SNase delta, as determined by CD, suggest that the formation of secondary structure and compaction of the polypeptide chain occur concurrently. Our results show that single amino acid substitutions can radically alter the conformational distribution of a partially condensed polypeptide chain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Cardiac ATP-sensitive K+ (KATP) channels (SUR2A plus Kir6.2) couple the metabolic state of the myocyte to its electrical activity via a mechanism that is not well understood. Recent pharmacological evidence suggests that KATP channels may mediate ischemic preconditioning. However, there is no potent pharmaceutical agent that specifically blocks the sarcolemmal KATP channel without significant effects on other cellular proteins. As a molecular tool, the GFG sequence in the H5 loop of the murine Kir6.2 channel was mutated to AFA. This mutated channel subunit (6.2AFA) suppressed wild-type Kir6.2 (6.2WT) channel current in a dominant-negative manner: when co-expressed with SUR2A and 6.2WT, whole-cell KATP current recorded from HEK cells was greatly attenuated. The 6.2AFA subunit also co-assembled with endogenous subunits in both smooth-muscle-derived A10 cells and rat neonatal ventricular myocytes, resulting in a significant reduction of current compared with that recorded from non-transfected or mock-transfected cells (<15% of control for both cell types). This study shows that mutation of GFG-->AFA in the putative pore-forming region of Kir6.2 acts in a dominant-negative manner to suppress current in heterologous systems and in native cells.  相似文献   

14.
15.
16.
17.
18.
The insulin-like growth factor I receptor is known to play a major role in transformation and apoptosis. The dominant negative mutant of the insulin-like growth factor I receptor, designated 486/STOP, causes massive apoptosis of tumor cells and inhibition of tumor growth and metastases. We now show that: (a) the stable expression of 486/STOP inhibits transformation (colony formation in soft agar) and/or tumor growth in nude mice of five different types of human tumor cell lines; and (b) more importantly, it has a bystander effect, inhibiting the growth of wild-type tumor cells when cells expressing 486/STOP are coinjected with wild-type tumor cells. These findings suggest that it is not necessary to infect all tumor cells with 486/STOP to inhibit tumor growth, and they also open the possibility of using the product of 486/STOP directly against tumor cells.  相似文献   

19.
The Notch gene of Drosophila plays an important role in cell fate specification throughout development. The Notch protein contains a large extracellular domain of 36 EGF-like repeats as well as 3 Notch/lin-12 repeats and an intracellular domain with 6 cdc10/ankyrin repeats, motifs which are highly conserved in several vertebrate Notch homologues [1-7]. In this review we summarize the results of two recent studies which attempt to establish structure-function relationships of the various domains of the Notch gene product [8, 9]. The functions of various structural domains of the Notch protein in vivo were investigated using a series of deletion mutants which have been ectopically expressed either under the hsp70 heat-shock promoter or under the sevenless eye-specific promoter. Truncation of the extracellular domain of Drosophila Notch produces an activated receptor as judged by its ability to cause phenotypes matching those of gain-of-function alleles or duplications of the Notch locus [8]. Equivalent truncations of vertebrate Notch-related proteins have been associated with malignant neoplasms and other developmental abnormalities [3, 6, 10, 11]. In contrast, dominant negative phenotypes result from overexpression of a protein lacking most intracellular sequences. These results were extended by an analysis of activated Notch function at single-cell resolution in the Drosophila compound eye [9]. It was shown that while overexpression of full-length Notch in defined cell types has no apparent effects, overexpression of activated Notch in the same cells transiently blocks their proper cell-fate commitment, causing them to either adopt incorrect cell fates or to differentiate incompletely. Moreover, an activated Notch protein lacking the transmembrane domain is translocated to the nucleus, raising the possibility that Notch may participate directly in nuclear events.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号