首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
对熔模精铸TG6合金进行了热等静压和退火热处理试验,研究了其铸态、热等静压态和退火态的显微组织和力学性能。结果表明,该合金在铸态下为晶粒粗大的魏氏组织,组织中存在缩松缺陷,合金抗拉强度为871.3MPa,塑性0.8%,合金组织中的疏松缺陷为断裂的裂纹起始源;通过热等静压后该合金抗拉强度及伸长率提高到950.7 MPa和3.7%;经过750℃退火热处理后,组织中β板条部分溶解,并析出(TiZr)6Si3硅化物,合金的室温拉伸延伸率提高到5%以上,强度相对于热等静压未发生明显改变,断口表现为解理断裂。  相似文献   

2.
喷射成形70Si30Al合金封装材料的组织性能研究   总被引:2,自引:0,他引:2  
利用喷射成形技术制备了70Si30Al合金新型电子封装材料,研究了材料沉积态、热压态的显微组织演变规律,测试了材料的各项性能。结果表明:沉积态材料显微组织细小均匀,一次Si相尺寸大约在10-40μm左右,且均匀弥散分布。经过热压后,材料的热膨胀系数为7×10-6-9×10-6K-1,热导率可以达到120 W.m-1.K-1。  相似文献   

3.
采用金相显微镜、扫描电子显微镜(SEM)、XRD等方法研究了热处理Mg-9Y-1Cu合金热处理后的组织结构,利用万能材料试验机测试样品的力学性能,用SEM研究了材料的断裂机理。结果表明,T6处理样品晶粒内部析出层片状14H结构LPSO相。经过挤压,T1合金晶粒明显减小,晶界增多,在晶间及晶粒内部弥散分布着细小第二相。挤压后人工时效样品(T5合金)晶粒长大,且析出的第二相数量有所增多。T6合金屈服强度和抗拉强度分别达到97 MPa和193 MPa。T1合金细化的晶粒和弥散分布第二相使得合金的综合力学性能显著提高,达到商用AZ系列镁合金的强度。T5合金伸长率有所下降,而强度变化不明显。  相似文献   

4.
以Si粉和6061Al合金粉末为原料,采用机械球磨-常压烧结工艺制备硅颗粒含量(质量分数)为50%的颗粒增强铝基复合材料,利用扫描电镜和X射线衍射仪分析不同温度下烧结的复合材料结构与物相组成,并测试材料的密度、抗弯强度、硬度及热膨胀系数等性能。结果表明,通过球磨可获得成分均匀的Si_p/6061Al复合粉体。烧结温度为700℃时,50%Si_p/6061Al复合材料仅含少量Al_2O_3杂质,Si相分布均匀,呈半连续骨架结构,Si颗粒与6061Al基体合金结合良好,材料中孔隙的数量和尺寸都最小。在680~750℃温度范围内,随烧结温度升高,50%Si_p/Al复合材料的致密度及抗弯强度先增大后降低,在700℃烧结的50%Si_p/6061Al复合材料具有优异的综合性能,其致密度、抗弯强度、硬度(HB)、热膨胀系数(室温)分别为96.4%,310.8 MPa,225.4和7.43×10~(-6)/K。  相似文献   

5.
采用真空热压烧结工艺制备Al-30Si合金、30%Sip/Al、30%SiCp/2024Al、30%SiCp/6061Al(均为体积分数)复合材料,测定其热膨胀系数及力学性能。利用扫描电镜(SEM)、能谱仪(EDS)对其微观组织结构及断口形貌进行表征,探究了高硅铝合金及颗粒增强铝基复合材料的组织与性能,分析了材料的断裂机制。结果表明:SiCp/2024Al复合材料中SiC颗粒分布均匀,组织致密,综合性能好,热膨胀系数(CTE)为13.69×10-6/K,硬度达到134 HB,极限抗拉强度达353 MPa。SiCp/6061Al复合材料中SiC颗粒分布较均匀,界面结合较好,组织不够致密,有少许孔隙,性能较好。SiCp/6061Al和SiCp/2024Al复合材料的断裂方式都是界面基体的撕裂结合SiC颗粒的断裂。Sip/Al复合材料中Si颗粒分布较均匀,断裂方式为界面脱开,性能较差。Al-30Si合金在烧结过程中形成大量板条状的Si相,性能最差,断裂方式以合金撕裂为主。  相似文献   

6.
利用光学显微镜(OM)、扫描电子显微镜(SEM)、能谱仪(EDS)、 X射线衍射仪(XRD)、拉伸实验、失重实验与电化学实验研究了热处理工艺对压铸Mg-7Al-1Ca-0.5Sn合金组织,力学性能和腐蚀性能的影响。结果表明:压铸态Mg-7Al-1Ca-0.5Sn合金组织由α-Mg, Mg_(17)Al_(12)相和CaMgSn相所组成,平均晶粒尺寸约为13.1μm。压铸态合金力学性能可达到:抗拉强度258.36 MPa、屈服强度188.08 MPa和伸长率10.21%。固溶处理(T4:400℃×15 h)使大部分Mg_(17)Al_(12)相溶入基体并改善第二相的形貌,组织中Mg_(17)Al_(12)相和CaMgSn相的形貌由网状和短棒状向粒状转化。固溶+时效处理(T6:400℃×15 h+200℃×15 h)使得Mg_(17)Al_(12)相以粒状在基体上弥散析出,且晶粒尺寸增大幅度较小,从而使合金获得良好的弥散强化效果。T6处理后合金的力学性能可以达到:抗拉强度306.69 MPa及伸长率14.98%,其比压铸态合金分别提高了18.7%和46.7%。热处理能够降低合金的腐蚀电位,增大腐蚀电流密度,从而降低Mg-7Al-1Ca-0.5Sn合金的耐蚀性。在相同腐蚀时间下, T4态合金腐蚀最为严重, T6态合金的次之,而铸态合金腐蚀最轻。  相似文献   

7.
《稀土》2021,(2)
采用OM、SEM、TEM、EBSD、XRD和万能材料试验机等手段研究了铸态、退火态、热变形+时效态、固溶态等四种状态下Mg-10Gd稀土镁合金的微观组织和力学性能。结果表明,铸态合金组织由α-Mg基体和晶界处的不连续Mg_5Gd共晶相组成;退火态合金组织为α-Mg固溶体;热变形+时效态合金主要由动态再结晶组织和弥散分布在晶粒内部的β′-Mg_7Gd相组成;固溶态合金组织为α-Mg固溶体,β′相完全溶解。由于β′相的析出强化作用,四种状态合金中热变形+时效态合金具有最高的抗拉强度为371MPa。铸态合金的断口处伴随着晶界共晶相的破裂,其主要断裂形式为准解理断裂。热变形+时效态合金拉伸断裂形式为撕裂棱和微孔聚合复合作用形成的准解理断裂。退火态和固溶态的断裂形式是以撕裂棱为主的准解理断裂。  相似文献   

8.
采用冷等静压、真空烧结的方法制备TC4钛合金,研究了不同固溶温度和时效温度对TC4钛合金组织及性能的影响。结果表明:冷等静压、真空烧结的方法制备的TC4粉末钛合金的抗拉强度可达852MPa,伸长率为16%;随着固溶温度的提高,钛合金的抗拉强度提高,伸长率降低,而随着时效温度的提高,抗拉强度降低,伸长率提高。在960℃×30min固溶、470℃×4h时效时,合金的抗拉强度达到1078MPa,伸长率达到11%。  相似文献   

9.
采用电弧熔丝增材制造方法成形了2024铝合金薄壁构件,研究了固溶时效热处理前后构件的微观组织和拉伸力学性能.结果表明,沉积态构件中,Al2Cu相和Al2CuMg相主要呈网状连续分布于晶界处,少量Al2Cu相呈颗粒状分布于晶界交点或晶粒内部;热处理后Al2Cu相呈颗粒状或棒状弥散分布.沉积态构件抗拉强度为250MPa,热...  相似文献   

10.
针对应用广泛的低密度.低膨胀、高热导、高比强的高硅铝合金,采用空气雾化水冷与真空包套热挤压工艺相结合的方法,制备了Al-30Si与Al-40Si过共晶高硅铝合金材料,并通过金相微观组织分析、力学性能检测及拉伸试样断口扫描,研究了不同热挤压温度对合金的组织形貌与性能的影响。结果表明:所制备的高硅铝合金材料组织十分细小且Si相均匀弥散分布,随着挤压温度的升高,硅相晶粒增大,挤压温度在370℃~490℃范围内,硅晶粒长大不十分明显,但超过此温度区间有一个明显长大的过程;抗拉强度随挤压温度的升高、合金中Si含量的增加及原始粉末粒度的增大而下降;随着挤压温度的升高,合金材料的断裂方式由韧性断裂方式过渡到韧性与脆性共存的混合断裂方式。  相似文献   

11.
采用热压烧结法制备了70%Si-Al和90%Si-Al两种合金,测量了两种合金的典型热性能和力学性能,并观察和对比了两种合金的显微组织。结果表明:随着Si含量从70%升高到90%,在各测量温度下,合金材料的线膨胀系数都降低。热压烧结制备的材料Si相细小,致密度高,界面结合力好,热导率高。随着Si相含量的增加,热压的Si-Al合金热导率逐渐降低。烧结的Si-Al合金的抗弯强度和弹性模量随Si相含量的增加逐渐降低,材料的断裂主要以Si相的脆性断裂为主。  相似文献   

12.
Mechanical properties and fracture behavior of Cu-0.84Co-0.23 Be alloy after plastic deformation and heat treatment were comparatively investigated.Severe plastic deformation by hot extrusion and cold drawing was adopted to induce large plastic strain of Cu-0.84Co-0.23 Be alloy.The tensile strength and elongation are up to 476.6 MPa and 18%,respectively.The fractured surface consists of deep dimples and micro-voids.Due to the formation of supersaturated solid solution on the Cu matrix by solution treatment at 950℃for 1h,the tensile strength decreased to271.9 MPa,while the elongation increased to 42%.The fracture morphology is parabolic dimple.Furthermore,the tensile strength increased significantly to 580.2 MPa after aging at 480℃ for 4h.During the aging process,a large number of precipitates formed and distributed on the Cu matrix.The fracture feature of aged specimens with low elongation(4.6%) exhibits an obvious brittle intergranular fracture.It is confirmed that the mechanical properties and fracture behavior are dominated by the microstructure characteristics of Cu-0.84Co-0.23 Be alloy after plastic deformation and heat treatment.In addition,the fracture behavior at 450 ℃ of aged Cu-0.84Co-0.23 Be alloy was also studied.The tensile strength and elongation are 383.6 MPa and 11.2%,respectively.The fractured morphologies are mainly candy-shaped with partial parabolic dimples and equiaxed dimples.The fracture mode is multi-mixed mechanism that brittle intergranular fracture plays a dominant role and ductile fracture is secondary.  相似文献   

13.
采用固相烧结工艺(1 300℃保温1 h)制备低钨含量(质量分数为60%~80%)的W-Ni-Fe合金,测定合金的抗拉强度、抗压强度和伸长率,利用金相显微镜观察合金的显微组织,并通过扫描电镜(SEM)观察合金断口形貌,研究钨含量对固相烧结W-Ni-Fe合金力学性能与微观结构的影响。结果表明:随钨含量降低,合金的孔隙率和平均孔径减小,抗拉强度增大,伸长率显著提高,抗压强度变化不大。W含量为60%~80%的W-Ni-Fe合金,其孔隙率为17.8%~21.4%,抗拉强度为231~262 MPa,抗压强度2 450~2 550 MPa,伸长率为0.3%~2.3%,压拉比为9.45~11.04,都能满足易碎型穿甲弹弹芯材料的性能要求。  相似文献   

14.
李宝秀 《特殊钢》2016,37(5):59-61
研究的Φ5 mm 500E抗震钢筋20MnVN(/%:0.19~0.20C,0.23~0.26Si,1.26~1.31Mn,0.016~0.023P,0.006~0.012S,0.10~0.11V,0.0038~0.0163N)的生产流程为50t顶底复吹转炉-LF-160 mm×160 mm方坯连铸-控轧控冷工艺。结果表明,随着钢中氮含量增加,500E 20MnVN钢盘条拉伸断口的韧窝变深,口径增大,组织中铁素体含量由63.6%增加至74.8%;增加氮含量有助于20MnVN钢盘条屈服强度、抗拉强度和伸长率的提高,当氮含量由0.0038%增加到0.0163%时,该钢屈服强度、抗拉强度和伸长率分别由513 MPa、650 MPa和10.5%提高到571 MPa、703 MPa和13.0%。分析了V-N微合金化和V(C,N)析出的强韧化机理。  相似文献   

15.
Fe元素对ZA27合金显微组织和力学性能的影响   总被引:1,自引:0,他引:1  
在ZA27合金中添加0.5%~2%的Fe元素,利用金相、扫描电镜(SEM)、能谱分析(EDS)、X射线扫描(XRD)、拉伸实验等测试手段,研究Fe含量对ZA27合金显微组织和力学性能的影响。结果表明:不同Fe含量的ZA27合金基体组织均由富铝的α相和富锌的η相组成。Fe元素以FeAl3金属间化合物的形式分布于基体中。随Fe含量增加,FeAl3的含量增多、尺寸增大。FeAl3能阻碍晶界迁移,起到细化枝晶的作用。研究还发现,室温下,随Fe含量增加,ZA27的强度和伸长率均降低;150℃高温下,Fe含量为1.5%左右的ZA27合金抗拉强度达192.75MPa,比未加Fe元素的ZA27合金提高约54.4%,伸长率达15.65%,从而获得兼具高强度和高塑性的高温ZA27合金。  相似文献   

16.
采用粉末冶金方法制备含Y2O3的稀土钼合金,利用金相显微镜、扫描电子显微镜(SEM)、X射线衍射(XRD)、能谱分析(EDS)等手段对钼合金的断裂特征和组织结构进行对比分析,研究稀土氧化物Y2O3含量对钼合金组织和性能的影响.研究表明:添加Y2O3能细化晶粒、改善钼合金的晶粒均匀性和致密度、提高钼合金的性能:拉伸强度和屈服强度随Y2O3含量的增加呈现先增高后降低的趋势,在Y2O3含量为1%时,抗拉强度达511.43MPa,屈服强度456.99MPa,分别是纯钼材料的1.31倍和1.57倍,综合力学性能最佳;在烧结坯中,Y2O3颗粒分布均匀,主要以球形和等轴状形式存在于晶界上.  相似文献   

17.
W-Ni-Cu-Sn系高比重合金的研究   总被引:5,自引:0,他引:5  
本文研究了烧结温度、保温时间以及添加锡对W-Ni-Cu合金性能的影响。结果表明,不添加锡的93W-Ni-Cu合金与添加1%Sn的85W-Ni-Cu-Sn合金相比,其烧结温度由1320℃降至1140℃,即烧结温度降低约200℃;抗拉强度从686N/mm2提高到980N/mm2;热膨胀系数提高了28%。获得了较好的综合性能。  相似文献   

18.
Tensile properties and fracture behaviors of silicon rich LM6 aluminum alloy were investigated in details for as cast alloy and modified by LM6 powdery-chip capsules. The obtained results showed that 20% modified LM6 cast composite ensured the excellent tensile properties (tensile strength of 203 MPa with 3.8% elongation). An impressive increase in the elongation (6.8%) was found for 25% modified cast composite with good ultimate tensile strength, 6.2% higher than unmodified (182 MPa). Characterization of the casts and fracture surfaces were carried out to study the effect of reinforcement particles. An influence of un-melted chip structure was observed inside the cavities and on fractured surfaces. The XRD results showed that cast consisted of inter-metallics of AlO2, Al2Si and Al4Si. It was attributed to micro-cracks prevalently propagated along the broken eutectic silicon particles and some rejected solid particles on the fractured surfaces with ductile and inter-granular fracture. Debonding and cracking of silicon particles were also detected on the fractured surface of the specimens.  相似文献   

19.
采用Al-3B对铸造Al-10Si合金进行了变质处理,运用非平衡相图和杠杆定律分析了变质处理Al-10Si合金显微组织变化规律,研究了变质处理对合金力学性能的影响.研究表明,Al-3B变质处理使铸造Al-10Si合金的凝固过冷度减小;当变质温度一定时,随着Al-3B加入量增加,铸造Al-10Si合金组织中初生α-Al相...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号