首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We have analyzed c-kit expression by hematopoietic progenitors from normal and 5-fluorouracil (5-FU)-treated mice by staining with monoclonal anti-c-kit antibody ACK-4. Marrow cells that were enriched for progenitors by a combination of metrizamide density separation and negative immunomagnetic selection with lineage-specific monoclonal antibodies (MoAbs) were separated into three populations based on the level of c-kit expression, c-kit(high), c-kit(low), and c-kit-. The majority of colony-forming cells from normal mice were in c-kit(high) population, whereas most of the progenitors from 5-FU-treated mice were in the c-kit(low) population. Optimal colony formation from c-kit(low) cells from 5-FU-treated mice required the interactions of at least two factors among interleukin-3 (IL-3), IL-11 and steel factor (SF) whereas colony formation from c-kit(high) cells of normal mice was supported well by IL-3 alone. Blast cells that were derived from 5-day culture of c-kit(low) post 5-FU cells were c-kit(high). These observations suggest that the primitive hematopoietic progenitors in cell cycle dormancy are c-kit(low) whereas actively cell cycling maturer progenitors are c-kit(high). Mature cells, with the exception of mast cells, derived from secondary culture of the c-kit(high) blast cells expressed little, if any, c-kit. These results are consistent with a model in which c-kit expression progresses from low levels on primitive, dormant multipotent progenitors to high levels on later, actively cycling progenitors, and finally, decreases to very low or undetectable levels on most mature blood cells, with the exception of mast cells.  相似文献   

2.
GVHD is prevented and stable chimerism is induced in the rat BMT model by 700 J/m2 but not 100-500 J/m2 UV-B irradiation of allogeneic BM cells. Paradoxically, CsA which prevents GVHD in clinical BMT causes an aggressive autoimmune disease termed syngeneic GVHD in irradiated syngeneic BMT recipients after its withdrawal. Recently, we have shown that while 500-700 J/m2 UV-B irradiation of syngeneic BM cells combined with a 30-day course of CsA recipient immunosuppression impairs hemopoiesis due to lack of hemopoietic factors, a low dose of 100-300 J/m2 UV-B is effective in preventing CsA-induced autoimmune disease without endangering BM engraftment. This study extends these findings to the P-to-F1 hybrid and fully allogeneic rat BMT models and examines the effectiveness of low-dose UV-B irradiation of BM cells combined with a short course of CsA treatment in the prevention of GVHD and induction of transplant tolerance. Lethally gamma-irradiated (10.5 Gy) LBNF1 recipients of naive or UV-B irradiated (100-700 J/m2) BMT were treated with CsA (12.5 mg/kg/day) for 30 consecutive days after BMT. All lethally irradiated LBNF1 that did not receive BMT died in < 16 days, while animals transplanted with UV-B (700 J/m2) BMT survived > 1 year without GVHD. In contrast, all recipients of naive BMT died of lethal GVHD in < 50 days. Similarly, all recipients of naive BMT that received a 30-day course of CsA therapy developed severe GVHD with 60% mortality after cessation of CsA therapy. CsA-treated recipients of BMT irradiated with 700 J/m2 died between 12 and 25 days from failure of hemopoiesis. In contrast, CsA-treated recipients of 100-200 J/m2 UV-B irradiated BMT showed full BM engraftment without GVHD after cessation of CsA and survived > 1 year. These results were reproducible in the fully allogeneic UV-B BMT model. To test for donor-specific tolerance, the animals challenged 100 days after BMT with cardiac allografts accepted permanently (> 100 days) Lewis but not BN (non-BMT parental donor) cardiac allografts. Our results confirm that 700 J/m2 UV-B irradiation of BM cells combined with CsA recipient immunosuppression impairs the recovery capacity of stem cells while the use of lower UV-B (100-200 J/m2) is effective in preventing CsA-induced autoimmune disease without endangering BM engraftment and leads to induction of transplant tolerance.  相似文献   

3.
Recently, we have demonstrated that antibodies that block the function of the beta2-integrin leukocyte function-associated antigen-1 (LFA-1) completely abrogate the rapid mobilization of hematopoietic progenitor cells (HPC) with colony-forming and radioprotective capacity induced by interleukin-8 (IL-8) in mice. These findings suggested a direct inhibitory effect of these antibodies on LFA-1-mediated transmigration of stem cells through the bone marrow endothelium. Therefore, we studied the expression and functional role of LFA-1 on murine HPC in vitro and in vivo. In steady state bone marrow +/- 50% of the mononuclear cells (MNC) were LFA-1(neg). Cultures of sorted cells, supplemented with granulocyte colony-stimulating factor (G-CSF)/granulocyte-macrophage colony-stimulating factor (GM-CSF)/IL-1/IL-3/IL-6/stem cell factor (SCF) and erythropoietin (EPO) indicated that the LFA-1(neg) fraction contained the majority of the colony-forming cells (CFCs) (LFA-1(neg) 183 +/- 62/7,500 cells v LFA-1(pos) 29 +/- 17/7,500 cells, P <.001). We found that the radioprotective capacity resided almost exclusively in the LFA-1(neg) cell fraction, the radioprotection rate after transplantation of 10(3), 3 x 10(3), 10(4), and 3 x 10(4) cells being 63%, 90%, 100%, and 100% respectively. Hardly any radioprotection was obtained from LFA-1(pos) cells. Similarly, in cytokine (IL-8 and G-CSF)-mobilized blood, the LFA-1(neg) fraction, which comprised 5% to 10% of the MNC, contained the majority of the colony-forming cells, as well as almost all cells with radioprotective capacity. Subsequently, primitive bone marrow-derived HPC, represented by Wheat-germ-agglutinin (WGA)+/Lineage (Lin)-/Rhodamine (Rho)- sorted cells, were examined. More than 95% of the Rho- cells were LFA-1(neg). Cultures of sorted cells showed that the LFA-1(neg) fraction contained all CFU. Transplantation of 150 Rho- LFA-1(neg) or up to 600 Rho-LFA-1(pos) cells protected 100% and 0% of lethally irradiated recipient mice, respectively. These results show that primitive murine HPC in steady-state bone marrow and of cytokine-mobilized blood do not express LFA-1.  相似文献   

4.
Keratinocyte growth factor (KGF) is important in tissue repair and wound healing and its administration can abrogate chemical- and radiation-induced tissue damage in rodents. We investigated KGF as a therapeutic agent for the prevention of graft-versus-host disease (GVHD)-induced tissue damage, morbidity, and mortality in an established murine allogeneic bone marrow transplantation (BMT) model. B10.BR (H2(k)) recipient mice were lethally irradiated and transplanted with C57BL/6 (H2(b)) bone marrow (BM) with spleen cells (BMS) as a source of GVHD-causing T cells. KGF-treated mice (5 mg/kg/d subcutaneously days -6, -5, and -4 pre-BMT) receiving BMS exhibited better survival than those not receiving KGF (P =.0027). Cyclophosphamide (Cy), a common component of total body irradiation (TBI)-containing regimens, was administered to other cohorts of mice at a dose of 120 mg/kg/d intraperitoneally on days -3 and -2 before BMT. KGF-treated mice again exhibited a better survival rate than those not receiving KGF (P =.00086). However, KGF-treated recipients receiving TBI or Cy/TBI BMS were not GVHD-free, as shown by lower body weights compared with BM groups. GVHD target tissues were assessed histologically during a 38-day post-BMT observation period. KGF ameliorated GVHD-induced tissue damage in the liver, skin, and lung (completely in some recipients) and moderately so in the spleen, colon, and ileum, even with Cy conditioning. These studies demonstrate that KGF administration, completed before conditioning, has potential as an anti-GVHD therapeutic agent.  相似文献   

5.
The effects of FLT3/FLK-2 ligand (FL) and KIT ligand (KL) on in vitro expansion of hematopoietic stem cells were studied using lineage-negative (Lin-)Sca-1-positive (Sca-1+) c-kit-positive (c-kit+) marrow cells from 5-fluorouracil (5-FU)-treated mice. As single agents, neither FL nor KL could effectively support the proliferation of enriched cells in suspension culture. However, in combination with interleukin-11 (IL-11), both FL and KL enhanced the production of nucleated cells and progenitors. The kinetics of stimulation by FL was different from that by KL in that the maximal expansion by FL of the nucleated cell and progenitor pools required a longer incubation than with KL. We then tested the reconstituting abilities of cells cultured for 1, 2, and 3 weeks by transplanting the expanded Ly5.1 cells together with "compromised" marrow cells into lethally irradiated Ly5.2 mice. Cells that had been expanded with either cytokine combination were able to maintain the reconstituting ability of the original cells. Only cells that had been incubated with KL and IL-11 for 21 days had less reconstituting ability than fresh marrow cells. These results indicate that there can be significant expansion of progenitors in vitro without compromising the reconstituting ability of stem cells. Addition of IL-3 to permissive cytokine combinations significantly reduced the ability of cultured cells to reconstitute the hematopoiesis of irradiated hosts. These observations should provide a basis for a rational approach to designing cytokine combinations for in vitro expansion of hematopoietic stem cells.  相似文献   

6.
The characterization of many cytokines involved in the control of hematopoiesis has led to intense investigation into their potential use in ex vivo culture to expand progenitor numbers. We have established the optimum ex vivo culture conditions that allow substantial amplification of transient engrafting murine stem cells and which, simultaneously, augment the ability to sustain serial bone marrow transplantation (BMT). Short-term incubation of unfractionated BM cells in liquid culture with stem cell factor (SCF) and interleukin-11 (IL-11) produced a 50-fold amplification of clonogenic multipotential progenitors (CFU-A). Following such ex vivo expansion, substantially fewer cells were required to rescue lethally irradiated mice. When transplanted in cell doses above threshold for engraftment, BM cells expanded ex vivo resulted in significantly more rapid hematopoietic recovery. In a serial transplantation model, unmanipulated BM was only able to consistently sustain secondary BMT recipients, but BM expanded ex vivo has sustained quaternary BMT recipients that remain alive and well more than 140 days after 4th degree BMT. These results show augmentation of both short-term recovery posttransplant and the ability to serially transplant marrow by preincubation in culture with SCF and IL-11.  相似文献   

7.
Prompt reconstitution of hematopoiesis after cytoreductive therapy is essential for patient recovery and may have a positive impact on long-term prognosis. We examined the role of the p53 tumor suppressor gene in hematopoietic recovery in vivo after treatment with the cytotoxic drug 5-fluorouracil (5-FU). We used p53 knock-out (p53-/-) and wild-type (p53+/+) mice injected with 5-FU as the experimental model. Analysis of the repopulation ability and clonogenic activity of hematopoietic stem cells (HSCs) and their lineage-committed descendants showed a greater number of HSCs responsible for reconstitution of lethally irradiated recipients in p53-/- bone marrow cells (BMCs) recovering after 5-FU treatment than in the corresponding p53+/+ BMCs. In post-5-FU recovering BMCs, the percentage of HSC-enriched Lin- Sca-1(+) c-Kit+ cells was about threefold higher in p53-/- than in p53+/+ cells. Although the percentage of the most primitive HSCs (Lin- Sca-1(+) c-Kit+ CD34(low/-)) did not depend on p53, the percentage of multipotential HSCs and committed progenitors (Lin- Sca-1(+) c-Kit+ CD34(high/+)) was almost fourfold higher in post-5-FU recovering p53-/- BMCs than in their p53+/+ counterparts. The pool of HSCs from 5-FU-treated p53-/- BMCs was exhausted more slowly than that from the p53+/+ population as shown in vivo using pre-spleen colony-forming unit (CFU-S) assay and in vitro using long-term culture-initiating cells (LTC-ICs) and methylcellulose replating assays. Clonogenic activity of various lineage-specific descendants was significantly higher in post-5-FU regenerating p53-/- BMCs than in p53+/+ BMCs, probably because of their increased sensitivity to growth factors. Despite all these changes and the dramatic difference in sensitivity of p53-/- and p53+/+ BMCs to 5-FU-induced apoptosis, lineage commitment and differentiation of hematopoietic progenitors appeared to be independent of p53 status. These studies suggest that suppression of p53 function facilitates hematopoietic reconstitution after cytoreductive therapy by: (1) delaying the exhaustion of the most primitive HSC pool, (2) stimulating the production of multipotential HSCs, (3) increasing the sensitivity of hematopoietic cells to growth factors, and (4) decreasing the sensitivity to apoptosis.  相似文献   

8.
Human severe combined immunodeficiency (SCID) can be caused by defects in Janus kinase 3 (JAK3)-dependent cytokine signaling pathways. As a result, patients are at high risk of life-threatening infection. A JAK3 -/- SCID mouse model for the human disease has been used to test whether transplant with retrovirally transduced bone marrow (BM) cells (JAK3 BMT) could restore immunity to an influenza A virus. The immune responses also were compared directly with those for mice transplanted with wild-type BM (+/+ BMT). After infection, approximately 90% of the JAK3 BMT or +/+ BMT mice survived, whereas all of the JAK3 -/- mice died within 29 days. Normal levels of influenza-specific IgG were present in plasma from JAK3 BMT mice at 14 days after respiratory challenge, indicating restoration of B cell function. Influenza-specific CD4(+) and CD8(+) T cells were detected in the spleen and lymph nodes, and virus-specific CD8(+) effectors localized to the lungs of the JAK3 BMT mice. The kinetics of the specific host response correlated with complete clearance of the virus within 2 weeks of the initial exposure. By contrast, the JAK3 -/- mice did not show any evidence of viral immunity and were unable to control this viral pneumonia. Retroviral-mediated JAK3 gene transfer thus restores diverse aspects of cellular and humoral immunity and has obvious potential for human autologous BMT.  相似文献   

9.
Leptin, the product of obese gene, was originally identified as a factor regulating body-weight homeostasis and energy balance. The present study has shown that leptin acts on murine hematopoiesis in vitro. In the culture of bone marrow cells (BMC) of normal mice, leptin induced only granulocyte-macrophage (GM) colony formation in a dose-dependent manner, and no other types of colonies were detected even in the presence of erythropoietin (Epo). Leptin also induced GM colony formation from BMC of db/db mutant mice whose leptin receptors were incomplete, but the responsiveness was significantly reduced. The effect of leptin on GM colony formation from BMC of normal mice was also observed in serum-free culture, and comparable with that of GM-colony-stimulating factor (CSF ). Although leptin alone supported few colonies from BMC of 5-fluorouracil (5-FU)-treated mice in serum-free culture, remarkable synergism between leptin and stem cell factor (SCF ) was obtained in the colony formation. The addition of leptin to SCF enhanced the SCF-dependent GM colony formation and induced the generation of a number of multilineage colonies in the presence of Epo. When lineage (Lin)-Sca-1(+) cells sorted from BMC of 5-FU-treated mice were incubated in serum-free culture, leptin synergized with SCF in the formation of blast cell colonies, which efficiently produced secondary colonies including a large proportion of multilineage colonies in the replating experiment. In serum-free cultures of clone-sorted Lin-c-Kit+Sca-1(+) and Lin-c-Kit+Sca-1(-) cells, although synergism of leptin and SCF was observed in the colony formation from both cells, leptin alone induced the colony formation from Lin-c-Kit+Sca-1(-), but not Lin-c-Kit+Sca-1(+) cells. These results have shown that leptin stimulates the proliferation of murine myelocytic progenitor cells and synergizes with SCF in the proliferation of primitive hematopoietic progenitors in vitro.  相似文献   

10.
The receptors for interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-5 share a common signaling subunit betac. However, in the mouse, there is an additional IL-3 signaling protein, betaIL-3, which is specific for IL-3. We have previously reported that IL-3 abrogates the lymphoid potentials of murine lymphohematopoietic progenitors and the reconstituting ability of hematopoietic stem cells. We used bone marrow cells from betac- and betaIL-3-knock-out mice to examine the relative contributions of the receptor proteins to the negative regulation by IL-3. First, we tested the effects of IL-3 on lymphohematopoietic progenitors by using lineage-negative (Lin-) marrow cells of 5-fluorouracil (5-FU)-treated mice in the two-step methylcellulose culture we reported previously. Addition of IL-3 to the combination of steel factor (SF, c-kit ligand) and IL-11 abrogated the B-lymphoid potential of the marrow cells of both types of knock-out mice as well as wild-type mice. Next, we investigated the effects of IL-3 on in vitro expansion of the hematopoietic stem cells. We cultured Lin-Sca-1-positive, c-kit-positive marrow cells from 5-FU-treated mice in suspension in the presence of SF and IL-11 with or without IL-3 for 7 days and tested the reconstituting ability of the cultured cells by transplanting the cells into lethally irradiated Ly-5 congenic mice together with "compromised" marrow cells. Presence of IL-3 in culture abrogated the reconstituting ability of the cells from both types of knock-out mice and the wild-type mice. In contrast, addition of GM-CSF to the suspension culture abrogated neither B-cell potential nor reconstituting abilities of the cultured cells of wild-type mice. These observations may have implications in the choice of cytokines for use in in vitro expansion of human hematopoietic stem cells and progenitors.  相似文献   

11.
A T cell activation antigen, Ly6C, is considered to be involved in the autoimmunity of some autoimmune-prone mice; however, the function of Ly6C remains largely unknown. We prepared a rat anti-mouse Ly6C monoclonal antibody (mAb) (S14) that inhibits the proliferation of peripheral T cells stimulated with anti-CD3 mAb in vitro. S14 mAb, the specificity of which is confirmed by a cDNA transfectant, recognizes Ly6C antigen preferentially expressed on a part of CD8+ T cells in peripheral lymphoid organs. The immunohistochemical analysis demonstrates that Ly6C appears on CD8+ T cells in the conventional T cell-associated area of BALB/c but not of nonobese diabetic (NOD) mice, confirming the absence of Ly6C+ T cells in NOD mice. Addition of soluble S14 mAb to the culture does not influence the proliferation of T cells in vitro; however, the S14 mAb coated on the plate clearly inhibits the proliferation and IL-2 production of anti-CD3-stimulated peripheral T cells. The T cells are arrested at the transitional stage from G0/G1 to S+G2/M phases, but they are not induced to undergo apoptotic changes in vitro. This inhibitory signal provided through the Ly6C molecule inhibited IL-2 secretion in a subpopulation of the activated CD4+ T cells. Ly6C is expressed on T cell clones of both Th1 and Th2 cells, but the cytokine secretion from Th1 clones is preferentially inhibited. These results suggest that Ly6C mediates an inhibitory signal for secretion of cytokines from Th1 CD4+ T cells, potentially causing the inhibition of immune response in peripheral lymphoid tissues.  相似文献   

12.
GVHD is a major complication in allogeneic bone marrow transplantation (BMT). MHC class I mismatching increases GVHD, but in MHC-matched BMT minor histocompatibility antigens (mH) presented by MHC class I result in significant GVHD. To examine the modification of GVHD in the absence of cell surface MHC class I molecules, beta2-microglobulin-deficient mice (beta2m(-/-)) were used as allogeneic BMT recipients in MHC- and mH-mismatched transplants. Beta2m(-/-) mice accepted MHC class I-expressing BM grafts and developed significant GVHD. MHC (H-2)-mismatched recipients developed acute lethal GVHD. In contrast, animals transplanted across mH barriers developed indolent chronic disease that was eventually fatal. Engrafted splenic T cells in all beta2m(-/-) recipients were predominantly CD3+alphabetaTCR+CD4+ cells (15-20% of all splenocytes). In contrast, CD8+ cells engrafted in very small numbers (1-5%) irrespective of the degree of MHC mismatching. T cells proliferated against recipient strain antigens and recognized recipient strain targets in cytolytic assays. Cytolysis was blocked by anti-MHC class II but not anti-CD8 or anti-MHC class I monoclonal antibodies (MoAbs). Cytolytic CD4+ T cells induced and maintained GVHD in mH-mismatched beta2m(-/-) mice, supporting endogenous mH presentation solely by MHC class II. Conversely, haematopoietic beta2m(-/-) cells were unable to engraft in normal MHC-matched recipients, presumably due to natural killer (NK)-mediated rejection of class I-negative cells. Donor-derived lymphokine-activated killer cells (LAK) were unable to overcome graft rejection (GR) and support engraftment.  相似文献   

13.
T cells with antidonor specificities have been isolated from human recipients experiencing graft rejection after allogeneic bone marrow transplantation (BMT). Partial T-cell depletion of unrelated BM grafts with an anti- T-cell receptor (TCR) monoclonal antibody (MoAb) directed against the TCR alpha/beta heterodimer have shown that the incidence of graft-versus-host disease is low and that the incidence of durable engraftment is high. These studies suggest either that the number of residual TCR alpha/beta+ cells was sufficient to permit alloengraftment or that the preservation of cells other than TCR alpha/beta+ cells was beneficial for engraftment. With respect to the latter, one such candidate cell is the TCR gamma/delta+ T cell. Because no studies have specifically examined whether TCR gamma/delta+ cells might be capable of eliminating BM-derived hematopoietic cells, we established a new graft rejection model system in which transgenic (Tg) H-2d mice (termed G8), known to express gamma/delta heterodimers on high proportion of peripheral T cells, were used as BMT recipients. These Tg TCR gamma/delta+ cells respond vigorously to target cells that express the nonclassical major histocompatibility complex (MHC) class lb region gene products encoded in H-2T region of H-2T(b)+ strains. G8 Tg mice were used as recipients for C57BL/6 (B6: H-2(b); H-2T(b)) T-cell-depleted (TCD) donor BM. We show that G8 Tg (H-2(d), H-2T(d)) mice are potent mediators of B6 BM graft rejection and that the rejection process was inhibited by anti-TCR gamma/delta MoAbs. In contrast, BM from a B6 congenic strain that expresses the H-2T(a) allele, B6.A-Tl(a)/BoyEg, was readily accepted, suggesting that H-2T antigens on repopulating donor BM cells are the targets of host graft rejecting T cells that express the TCR gamma/delta heterodimer. PB chimerism studies were performed at > or = 1.5 months post-BMT using TCD BM from severe combined immunodeficient allogeneic donors, which is highly susceptible to rejection by the host. The addition of donor G8 TCR gamma/delta+ cells to TCD donor BM was shown to significantly increase alloengraftment in B6 recipients. These results show that (1) host TCR gamma/delta+ cells can reject repopulating donor cells, presumably by responding to nonclassical MHC class lb gene products expressed on BM-derived hematopoietic progenitor cells; and (2) donor TCR gamma/delta+ cells can facilitate the alloengraftment of rigorously TCD donor BM.  相似文献   

14.
BACKGROUND: Both fibroblast-mediated cytokine gene therapy and bone marrow transplantation (BMT) have proven to be efficient protocols for the recovery of bone marrow depression. In this report, the effects of fibroblast-mediated interleukin (IL)-6 gene therapy, in combination with BMT, on the recovery of irradiation-induced bone marrow depression were investigated. METHODS: NIH3T3 fibroblast cells engineered to secrete IL-6 (NIH3T3-IL-6) or NIH3T3 cells transduced with the neomycin gene (NIH3T3-Neo), in combination with 10(7), 10(6), or 10(5) syngeneic bone marrow cells, were implanted into irradiated mice. RESULTS: The platelets and white blood cells in the peripheral blood of the irradiated mice increased greatly 12 days after implantation of NIH3T3-IL-6 cells and BMT, the white blood cell counts were restored to a normal level 32 days after the combined therapy, and the platelet number was obviously higher than that in mice implanted with NIH3T3-Neo and BMT. Twenty and 25 days after the combined therapy, the mice showed accelerated recovery of colony-forming unit (CFU)-granulocyte/macrophages and CFU-megakaryocytes when compared with the mice implanted with NIH3T3-Neo cells and BMT. Ten days after lethal irradiation with gamma rays, the spleens formed more CFU-spleen in mice implanted with NIH3T3-IL-6 cells and BMT than in mice injected with phosphate-buffered saline or NIH3T3-Neo cells. Combined therapy with NIH3T3-IL-6 cell implantation and BMT delayed the survival period of the hematopoietic-depressed mice significantly when compared with therapy with NIH3T3-Neo cell implantation and BMT. CONCLUSIONS: These data demonstrated that the combined therapy of fibroblast-mediated IL-6 gene therapy and BMT could significantly promote the recovery of irradiation-induced hematopoietic depression.  相似文献   

15.
BACKGROUND AND OBJECTIVE: CD34+ hematopoietic progenitor cells (HPCs) constitute a heterogeneous population both in size and in immunological features. Lack of CD38, HLA-DR and lineage committed antigens as well as the co-expression of Thy-1 (CDw90) and c-kit receptor (CD117), are able to identify the so-called stem cells. A flow cytometric study was carried out to investigate the co-expression of Thy-1 and c-kit receptors, both members of Ig superfamily adhesion molecules, involved in cell to cell and cell to stroma interactions, on bone marrow (BM), mobilized peripheral blood (PB) and human umbilical cord blood (HUCB) CD34+ HPCs. DESIGN AND METHODS: Lysed whole blood from 15 BM, 25 mobilized PB and 25 HUCB samples were used to perform a five-dimensional flow cytometric evaluation of both CDw90 and CD117 on CD34+ cells. RESULTS: Few CD34+ cells co-expressed Thy-1 antigen in all three compartments (BM: 11.2 +/- 7.2%; PB: 6.2 +/- 3.6%; HUCB: 6 +/- 2.9%; BM vs PB < 0.04; BM vs HUCB < 0.008; PB vs HUCB ns). c-kit receptor was detected on the majority of CD34+ HPCs, particularly in HUCB (HUCB: 80.7 +/- 8.2%; BM: 72.3 +/- 13.1%; PB: 64.2 +/- 17%; HUCB vs BM < 0.03; HUCB vs PB < 0.0001; BM vs PB ns). CD34+Thy-1+ and CD34+c-kit+ HPCs generally displayed HLA-DR antigen, as expression of early cell commitment. However, the most immature CD34+Thy-1+HLA-DR- (HUCB: 1 +/- 0.6%; BM: 0.4 +/- 03%; PB: 0.7 +/- 0.5%; HUCB vs BM < 0.0001; BM vs PB < 0.04; HUCB vs PB ns) and CD34+c-kit+HLA-DR- HPCs (HUCB: 6.5 +/- 4.4%; BM: 6.3 +/- 4.8%; PB: 2.2 +/- 1.8%; HUCB vs BM ns; BM vs PB < 0.0001; HUCB vs PB < 0.0001) were mainly detected in HUCB. Finally, the greatest percentage of CD34+Thy-1+c-kit+ cells was found in BM (6.9 +/- 4.1%) followed by leukapheretic samples (4.4% +/- 2.7) and then by HUCB (3.7 +/- 1.2%; BM vs PB ns; BM vs HUCB < 0.001; HUCB vs PB ns). INTERPRETATION AND CONCLUSIONS: Since the blood release or HPCs is probably due to a perturbation of the adhesive interactions between these cells and the marrow stroma, the different pattern of Thy-1 and c-kit receptor expression on CD34+ HPCs found in the three hemopoietic compartments evaluated can lead to new knowledge about the mobilization kinetics in which the Ig superfamily adhesion molecules are involved.  相似文献   

16.
The ovarian steroid hormone estrogen (E2) elicits a multiplicity of both systemic and uterotropic responses in vivo. For example, the administration of E2 to ovariectomized (Ovx) and sexually immature rodents leads to uterine-specific inflammatory infiltrates. In this study, we quantitated the number of eosinophils and BM8+, Ia+, and CD4+ cells in uteri obtained from adult Ovx control and E2-treated C57BL/6J, C3H/HeJ, and (C57BL/6J x C3H/HeJ) (B6C3) F1 hybrid mice. All three strains exhibited a significant increase in the number of uterine eosinophils and BM8+ macrophages after E2 treatment. However, C57BL/6J and B6C3 F1 hybrid mice responded with a greater number of infiltrating eosinophils and macrophages as compared with C3H/HeJ. A similar analysis of Ia+ and CD4+ cells showed that E2 treatment either down-regulates or does not affect the number of such cells in all three strains. Genome exclusion mapping using a (C57BL/6J x C3H/HeJ) x C3H/HeJ backcross population localized Est1, the major locus controlling the number of eosinophils infiltrating the uterus after E2 treatment, to chromosome 4. In addition, suggestive linkage to marker loci on chromosomes 10 and 16 was detected and evidence for locus interaction is presented. Our results conclusively demonstrate that E2-regulated/ dependent responses can be genetically controlled, indicating that the phenotypic variation observed in both the normal and pathological effects of E2 may, in part, be due to a genetic component.  相似文献   

17.
Transduction of hematopoietic stem cells with a novel retrovirus has allowed long-term expression of human Bcl-2 in multiple hematopoietic lineages. Thy-1.2lo Sca-1+ H-2Khi stem cells enriched from the bone marrow of 5-fluorouracil-treated (Ly5-2) mice were infected with the bcl-2 retrovirus and injected into (Ly5-1) irradiated recipients. Analysis at 5 months indicated that reconstitution of hematopoiesis occurred predominantly from donor-derived (Ly5-2+) stem cells and that, in half the mice (18 of 35), most blood cells derived from virally transduced stem cells. The level of Bcl-2 expression achieved with the retroviral vector approached that of a well-characterized transgenic vector and could be sustained for life in several blood cell lineages. In the 25 mice assessed at 10 months, human Bcl-2 was readily detectable in 62+/-22% of Ly5-2+ peripheral blood leukocytes. More detailed analysis of a cohort killed between 14 and 20 months established that human Bcl-2 protein could be detected in B and T lymphocytes, granulocytes, macrophages, and some immature erythroid cells. Furthermore, hematopoietic stem cells from the bone marrow of these mice maintained Bcl-2 expression in hematopoietic tissues of secondary recipients for at least another 19 months. These data provide clear evidence for efficient infection of primitive hematopoietic stem cells and for maintenance of proviral expression for over 2.5 years, the lifespan of mice. The level of exogenous Bcl-2 was sufficient to enhance survival of B and T lymphoid cells, granulocytes, and myeloid colony-forming cells cultured under suboptimal conditions, but hematopoiesis in the mice was not notably perturbed.  相似文献   

18.
To elucidate the capacity of murine early hematopoietic progenitor cells (HPCs) to differentiate into dendritic cells (DCs), lineage phenotypes (Lin)-c-kit+ HPCs were highly purified from either wild-type or tumor necrosis factor (TNF) receptor p55 (TNF-Rp55)-deficient mice. Upon culture with granulocyte-macrophage colony-stimulating factor (GM-CSF) and stem cell factor (SCF) for 14 days, wild-type mouse Lin-c-kit+ HPCs did not exhibit characteristic features of DC such as sheet-like projections and veil processes. Moreover, these cells expressed a marginal level of DC markers such as DEC-205, CD86, and barely supported allogenic MLR. However, the addition of mouse TNFalpha generated a large number of cells with typical DC morphology, expression of high levels of Ia, DEC-205, CD86, and function of stimulating allogenic MLR. Moreover, a proportion of these mature DCs and thymic DCs expressed Thy-1 mRNA as well as Thy-1 antigen, whereas freshly isolated splenic DCs did not. These results suggested that DCs generated in our culture system phenotypically resemble thymic ones. In contrast, mouse TNFalpha failed to induce TNF-Rp55-deficient mice-derived Lin-c-kit+ HPCs to generate DCs with characteristic morphology, immunophenotype, and accessory function for T cells under the same culture conditions, suggesting a crucial role of TNF-Rp55 in TNFalpha-mediated DC differentiation from HPCs. Interestingly, human TNFalpha, which can bind to mouse TNF-Rp55 but not TNF-Rp75, was incapable to augment DC generation from wild-type mouse Lin-c-kit+ HPCs. Collectively, these results suggest that TNFalpha has a pivotal role in DC generation from murine early HPCs in collaboration with GM-CSF and SCF through the interaction of TNF-Rp55 and TNF-Rp75.  相似文献   

19.
Determination of hematological chimerism could be helpful in understanding the biology of leukemic relapse after allogeneic bone marrow transplant (BMT) for chronic myeloid leukemia (CML), because the detection of malignant residual cells carrying the bcr/abl message by qualitative RT-PCR is of limited value in predicting disease progression for individual patients. We have studied the chimerism pattern and the bcr/abl status by Southern-blot in 15 CML patients (M/F:6/9) transplanted with unmanipulated BM from HLA identical sibling donors, persistently bcr/abl positive by RT-PCR. The median age of the series was 31 years (18-49) and disease status at BMT was: chronic phase: 11, accelerated phase: 3 and blast crisis: 1 patient. Of the 15 patients, 9 are alive and in complete remission (CR), 4 have died in CR and 2 are alive but suffered relapse at + 19 and +26 months post-BMT. The median follow-up is 81 months (13,7-168). Rearrangement of the BCR gene was performed by Southern-blot using P32-labeled transprobe-1. PCR analysis of chimerism was assessed using primers for the following VNTR loci: D1S80, D1S111, 33.1, APO-B, YNZ-22, lambdag3 and DXS52. Seventy-nine samples were analyzed (median per patient 5 (range 2-9)). Thirteen patients showed complete chimerism and lacked BCR rearrangement over time by Southern-blot. The 2 patients who relapsed showed mixed chimera status from +9 and +5 months respectively until the end of the study. Persistent BCR rearrangement was observed in these 2 patients from +12 and +11 months respectively. Our data suggest that mixed chimerism may predict hematologic or cytogenetic relapse by several months in those patients who are persistently PCR-positive post-BMT.  相似文献   

20.
In vivo expansion and multilineage outgrowth of human immature hematopoietic cell subsets from umbilical cord blood (UCB) were studied by transplantation into hereditary immunodeficient (SCID) mice. The mice were preconditioned with Cl2MDP-liposomes to deplete macrophages and 3.5 Gy total body irradiation (TBI). As measured by immunophenotyping, this procedure resulted in high levels of human CD45(+) cells in SCID mouse bone marrow (BM) 5 weeks after transplantation, similar to the levels of human cells observed in NOD/SCID mice preconditioned with TBI. Grafts containing approximately 10(7) unfractionated cells, approximately 10(5) purified CD34+ cells, or 5 x 10(3) purified CD34+CD38- cells yielded equivalent numbers of human CD45+ cells in the SCID mouse BM, which contained human CD34+ cells, monocytes, granulocytes, erythroid cells, and B lymphocytes at different stages of maturation. Low numbers of human GpA+ erythroid cells and CD41+ platelets were observed in the peripheral blood of engrafted mice. CD34+CD38+ cells (5 x 10(4)/mouse) failed to engraft, whereas CD34- cells (10(7)/mouse) displayed only low levels of chimerism, mainly due to mature T lymphocytes. Transplantation of graded numbers of UCB cells resulted in a proportional increase of the percentages of CD45+ and CD34+ cells produced in SCID mouse BM. In contrast, the number of immature, CD34+CD38- cells produced in vivo showed a second-order relation to CD34+ graft size, and mice engrafted with purified CD34+CD38- grafts produced 10-fold fewer CD34+ cells without detectable CD34+CD38- cells than mice transplanted with equivalent numbers of unfractionated or purified CD34+ cells. These results indicate that SCID repopulating CD34+CD38- cells require CD34+CD38+ accessory cell support for survival and expansion of immature cells, but not for production of mature multilineage progeny in SCID mouse BM. These accessory cells are present in the purified, nonrepopulating CD34+CD38+ subset as was directly proven by the ability of this fraction to restore the maintenance and expansion of immature CD34+CD38- cells in vivo when cotransplanted with purified CD34+CD38- grafts. The possibility to distinguish between maintenance and outgrowth of immature repopulating cells in SCID mice will facilitate further studies on the regulatory functions of accessory cells, growth factors, and other stimuli. Such information will be essential to design efficient stem cell expansion procedures for clinical use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号