首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dissimilar metal joints of galvannealed steel and commercially available pure aluminium (A1050) sheets were produced by changing the laser power and the roller pressure by the laser pressure welding method. In this method, the YAG laser beam was irradiated into a flare groove made by these dissimilar metal sheets. In addition, the laser beam was scanned at various frequencies and patterns through the lens using two-dimensional scanning mirrors. Then the sheets were pressed by the pressure rolls to be joined. The compound layers in the weld interface were observed by optical microscope, and the layer thicknesses were measured. The thicknesses were in the range of 7–20 μm. The mechanical properties of welded joints were evaluated by the tensile shear test and the peel test. In the tensile shear test, the strengths of the joints produced under the most welding conditions were so high that the fracture occurred through the base aluminium sheet. In the peel test of the specimens subjected to the laser beam of 1200–1400 W power under the roller pressure of 2.94 kN, the specimen fracture took place in the base aluminium sheet. Even if the compound layer was thick, high joint strength was obtained. In order to know the reason for such high strength of joints with thick compound layers and the joining mechanism, the compound layer was observed by the HR-TEM. The TEM observation results revealed that the main phase in the compound layer was the solid solution of Al + Zn. Moreover, the intermetallic compound was identified as FeAl, Fe2Al5, Fe4Al13, and Fe2Al5Zn0.4 phase by electron diffraction. The Fe3Zn10 (Γ phase) of Fe–Zn intermetallic compound was confirmed on a Fe base material. It is assumed that the joining areas were heated in a range of 782°C more than 665°C, a melting point of Al, by laser irradiation because the δlk phase aspect was not confirmed. Because the surfaces of A1050 and Zn plated layer were melted thinly, the layer was over 10 μm thicker. The reason for the production of high strength joints with the relatively thick intermetallic compound layer was attributed to the formation of (Al + Zn) phase with finely dispersed intermetallic compounds.  相似文献   

2.
Laser pressure welding was conducted by changing the laser power and the roller pressure in the previous experiment. It was revealed that dissimilar metal welding of galvannealed steel and pure aluminium was feasible in a wide range of welding conditions. When the roller pressure was more than 1.96 kN at the laser powers equal to or less than 1400 W, the joint strengths were so high that the specimens in the tensile shear and the peel tests fractured in the A1050 parent metal.

In order to know the reason for such high strengths of joints with thick compound layers and the joining mechanism, the compound layer was observed by HR-transmission electron microscopy (TEM). The TEM observation results revealed that the main phase in the compound layer was the solid solution of Al + Zn. Moreover, the intermetallic compound was identified as FeAl, Fe2Al5, Fe4Al13 and Fe2Al5Zn0.4 phase by electron diffraction. The Fe3Zn10 (Γ phase) of Fe–Zn intermetallic compound was confirmed on a Fe base material. It is guessed that the joining areas were heated at a range of 782°C more than 665°C, a melting point of Al, by laser irradiation because the δlk phase aspect was not confirmed. Because the surfaces of A1050 and Zn plated layer were melted thinly, the layer was over 10 μm thicker. The reason for the production of high-strength joints with a relatively thick intermetallic compound layer was attributed to the formation of (Al + Zn) phase with finely dispersed intermetallic compounds.  相似文献   

3.
Abstract

This study was performed to obtain fundamental knowledge concerning the development of laser pressure welding technology for the joining of dissimilar metals. Laser pressure welding of Al alloy A6061 and low C steel SPCC sheets was carried out to investigate the effects of the roller pressure, laser beam scanning speed and irradiation position on the tensile shear and peel strength of welded joints. The interfaces of the joints were observed and analysed by SEM and EDX, and the formation phases on the peeled surfaces were identified with XRD. It was revealed that prevention and suppression of oxidation during welding was extremely important to the production of a sound joint with good mechanical properties. The highest tensile strength and the highest peel strength of joints were obtained at a laser power of 1·8 kW, laser scanning speed of 30 Hz, laser irradiation position at the centreline, roller pressure of more than 245 MPa and welding speed of 0·5 m min?1 in an Ar atmosphere. The fracture occurred not in the welded zone but in the A6061 base alloy specimen.  相似文献   

4.
Abstract

The present paper reports the resistance spot welding of steel and aluminium sheets using aluminium clad steel sheets as insert metals. Intermetallic compound layers were formed in the weld zones in direct spot welding of steel sheets to aluminium sheets. Thus, the strength of these joints was lower than that of aluminium to aluminium joints. Intermetallic compound layers were also formed at the steel/aluminium interfaces of the insert metal in welding of steel to aluminium using an insert metal sheet. However, the strength of these joints was of the same order as that of the aluminium joints. The fracture mode of these joints varied with the welding current. The suitable welding current for steel to aluminium joints varied between the values suitable for steel to steel and aluminium to aluminium joints. The fatigue strength of joints using insert metals was somewhat lower than that of the aluminium joints.  相似文献   

5.
Recently, lightening, speed-up and decreasing vibration of the transport vehicles have been discussed for improving of environmental problems. As one solution, the material hybrid concept using aluminum alloys and high strength steels has been proposed. Therefore, new welding processes by which these dissimilar materials can be joined in high reliability and productivity are demanded. Laser roll welding was developed for joining of dissimilar metals by M. Kutsuna, M. Rathod and A. Tsuboi in 2002. Up to now, a CO2 laser has been used as a heat source. In the present work, laser roll welding of low carbon steel and aluminum alloy using a 2 kW fibre laser was investigated to improve the joint properties due to the effective heating characteristics. Effects of the process parameters were studied. Otherwise, the influences of process parameters on the weldability, the formation of intermetallic compound layer and the mechanical properties have been investigated. As a result, various types of intermetallic compound layer were confirmed at the laser roll welded joint interfaces. When intermetallic compound layer thickness was less than 10 μm, the specimen was a failure in the base metal of low carbon steel in the tensile shear test.  相似文献   

6.
This paper reports the results of a comparison between the mechanical characteristics of butt joints in 3.0 mm thick Ti6Al4V titanium alloy sheets, made by laser welding with no filler material and by laser–arc hybrid welding. Vickers hardness tests have been performed on cross-sections of the beads obtained. In particular, the influence of the gap between the sheets in test welds performed using CO2 laser–MIG hybrid welding has been analysed. Cross-sections of the weld beads obtained with several different gap sizes have been analysed morphologically. The welded joints have been subjected to draw testing, and joint deformation behaviour has been analysed using an optical deformation measurement system based on stereoscopic image capture (ARAMIS 3D analysis system).  相似文献   

7.
Recently, the demand for dissimilar metal joints of titanium to aluminium alloy has arisen in industry, especially in the transportation vehicle industry. However, it is well known that fusion welding of titanium to aluminium alloy is difficult because of generating the brittle intermetallic compound at the joint interface. Therefore, new welding processes with high reliability and productivity for these dissimilar materials are demanded. In the present work, Laser roll welding of titanium to aluminium alloy using a 2 kW fibre laser was tried to investigate the effects of the process parameters on the formation of the interlayer and the mechanical properties of the joint. As a result, the cross-section of the joint shows partial melting of the aluminium sheet and spreading of molten aluminium alloy on the titanium sheet occurs during the welding thermal cycle. Various types of intermetallic compound were confirmed at the interlayer of the welded joint. The specimen with a bonding width of 2.8 mm failed in the base metal of titanium in the tensile shear test. In Erichsen cupping tests, the Erichsen value was 5.7 mm. This value was 89% of the base metal of aluminium sheet.  相似文献   

8.
A basic reseach of tailored blank welding between a low carbon steel sheet and a STS 304 stainless steel sheet was carried out with CO2 laser beam. The materials used in this work were a low carbon steel sheet with a thickness of 0.9 mm and a STS 304 stainless steel sheet with the same thickness. Experiments were carried out by applying the Taguchi method to obtain optimized conditions in order to apply this tailored blank laser welding method in the practical manufacturing process. In order to compare the laser welding results with the conventional welding process, GTA welding was carried out for the same materials. Optical microscopy, SEM and XRD analyses were performed to observe the microstructures and to analyze the various phases. A tensile test, hardness test and Erichsen test were performed to evaluate the formability of welded specimens. In addition, immersion test was carried to estimate corrosion resistance. A WDS analysis showed that laser welding resulted in almost the same dilution of both low carbon steel and stainless steel in welded metal, meanwhile, GTA welding resulted in more dilution of stainless steel due to its slower heat conductivity. The formability of the laser welded specimen reached 83% of that in base metal. On the other hand, it was 63% in the case of GTA welding. During the tension test, base metal was fractured in the case of a laser welded specimen, meanwhile the welded zone was fractured in the case of the GTA welded specimen. The corrosion test showed that weight loss per unit area was less in the laser welded specimen than that of the GTA welded specimen.  相似文献   

9.
Abstract

This paper aims to evaluate the formability of tailor welded blanks of dual phase (DP600)/transformation induced plasticity (TRIP700) steel sheets. In this work, bead on plate butt joints of 2·5 mm DP600 and 1·2 mm TRIP700 steel sheets were performed using CO2 laser beam welding. Microhardness measurements and transverse tensile testing were carried out to characterise the welds. The formability of base metals and welds were investigated by standard Erichsen test. In a perpendicular tensile test to the weld line, all specimens were fractured at the TRIP base metal, and the strengths were somewhat higher than those of base metal. There was a significant reduction in formability caused by welding of the DP600/TRIP700 steel sheets, and the formability increased with increasing welding speed.  相似文献   

10.
镀锌钢板的CO2激光焊焊接性(Ⅱ)   总被引:2,自引:1,他引:1       下载免费PDF全文
崔怀洋  左铁钏 《焊接学报》2004,25(5):67-69,73
以裁焊板工业生产为背景.埘汽车用镀锌钢板的CO2激光切割板坯的CO2激光焊接的焊缝性能进行了试验研究。试验中的激光焊缝埘服强度都大干母材.焊缝金相组织以碗度较软的引状铁索体为特征,包含激光焊缝的锉锌钢板仍具有优良的深冲性能.在焊缝附近锌层烧损小于0.5mm宽。镀锌层具有牺牲保护作用使得激光焊缝不易腐蚀。因此.故焊板的激光焊接工艺可靠.从焊接角度看,激光切割取代裁焊扳生产中剪切工艺是可行的。  相似文献   

11.
Abstract

Intermediate frequency resistance spot welding has been adopted to join dissimilar materials of H220YD galvanised high strength steel and 6008 aluminium alloy. The effects of welding current and welding time on microstructures and mechanical properties of the welded joints were investigated. A thin intermetallic compound layer composed of Fe2Al5 phase and Fe4Al13 phase formed at the steel/aluminium interface. The interfacial intermetallic compound layer has higher nanohardness compared with the aluminium alloy nugget and galvanised steel. With increasing welding current (4–11?kA) and welding time (50–300?ms), the nugget diameter increased, the interfacial layer structure became coarser and the tensile shear load of the welded joints had an increased tendency. The maximum tensile shear load reached 3309?N at 9?kA for 250?ms. Crack initiated at the interfacial intermetallic compound layer of the tensile shear specimens, then propagated through the interfacial layer principally, and meantime through the aluminium alloy fusion zone near the interface partially.  相似文献   

12.
Tandem beam brazing with aluminium filler metal (BA4047) was conducted in order to develop the fluxless laser brazing technique of aluminium alloy (AA6022) to galvanized steels (GA and GI steels). Laser powers of tandem beam and offset distance of preheating beam from the root to the steel base metal were varied. Sound braze beads could be obtained by optimizing the preheating and main beam powers under the offset distances of 0–1 mm. A small amount of zinc remained at the braze interface between galvanized steels and the braze metal. The reaction layer consisting of Fe–Al intermetallic compounds was also formed at the steel interface, and the thickness of reaction layer could be predicted during the laser brazing (thermal cycle) process based on the growth kinetics with the additivity rule. The metal flow analysis of the melted filler metal on joints revealed that wettability and spreadability of the filler metal on the GI steel joint were superior to those on the GA steel joint. The fracture strength of the lap joint attained approx. 55–75% of the base metal strength of aluminium alloy. It was concluded that fluxless laser brazing could be successfully performed by using a tandem beam because the zinc coat layer acted as the brazing flux.  相似文献   

13.
镀锌钢板的CO2激光焊焊接性   总被引:12,自引:6,他引:12       下载免费PDF全文
崔怀洋  陈铠  左铁钏 《焊接学报》2004,25(4):115-118
以裁焊板工业生产为背景,对汽车用镀锌钢板的CO2激光切割板坯的CO2激光焊焊接性进行了试验研究。对于不等厚和等厚的镀锌板拼接进行CO2激光焊接,在激光功率4000W时其焊接速度可达0.1m/s。对镀锌钢板激光切口拼接的激光焊接与铣口拼接的激光焊接的焊缝形貌和硬度进行了比较,它们产生的焊缝宽度在0.5-1.0mm范围,激光焊缝最大硬度比母材硬度高出1-1.5倍,激光焊接对激光切口拼接与铣口拼接两者都可获得等同的宏观焊接质量。  相似文献   

14.
The oscillation laser beam is considered to be effective as a heat source of narrow gap multi-layer welding because oscillation laser welding can control the penetration shape and prevent the lack of fusion. In this study, in order to establish a narrow gap welding process by oscillation laser beam, butt welding experiments of 50 mm thickness carbon steel plate were performed. By the appropriate control of the heat input area using the in-process sensor for recognizing the groove shape, narrow gap welding of a thick plate with groove which was cut by gas cutting was achieved. Properties of the welded joint had been confirmed by nondestructive testing, tensile test and side bend test. A two-dimensional numerical calculation model for welding deformation was developed. This calculation model was used for investigation of the optimal groove angle. The results of calculations were in quantitative agreement with the experimental results. Microstructure of the weld zone had multiple thermal histories. According to the hardness test results, maximum hardness of the heat affected zone of the upper layer has been lowered than that of the lower layer.  相似文献   

15.
Abstract

Laser beam welding is currently used in the welding of steels, aluminium alloys, thin sheets, and dissimilar materials. This high power density welding process has unique advantages of cost effectiveness, deep penetration, narrow bead and heat affected zone (HAZ) widths, and low distortion compared to other conventional welding processes. However, the metallurgical and mechanical properties of laser welds and the response of conventional materials to this new process are not yet fully established. The welding process may lead to drastic changes in the microstructure with accompanying effects on the mechanical properties and, hence, on the performance of the joint. The thermal cycles associated with laser beam welding are generally much faster than those involved in the conventional arc welding processes. This leads to the formation of a rather small weld zone that exhibits locally a high hardness in the case of C–Mn structural steels owing to the formation of martensite. It is currently difficult to determine the tensile properties (full stress–strain curves) of the laser welded joint area owing to the small size(~V 2·3 mm) of the fusion zone. Complete information on the tensile and fracture toughness properties of the fusion zone is essential for prequalification and complete understanding of the joint performance in service, as well as for conducting a defect assessment procedure on such welded joints. Therefore, an experimental investigation into the mechanical properties of laser welded joints was carried out to establish a testing procedure using fiat micro tensile specimens (0·5 mm in thickness, 2 mm in width) for determination of the tensile properties of the weld metal and H AZ of the laser beam welds. Three similar joints, namely St 37–St 37, St 52–St 52, and austenitic–austenitic, and two dissimilar ferritic–austenitic joints were produced by CO2 laser, using 6 mm thickness plates. The mechanical properties have been examined by microhardness survey and testing of conventional transverse tensile, round tensile, and fiat microtensile specimens. The results for the micro tensile specimens were compared with those for standard round tensile specimens and this clearly showed the suitability of the microtensile specimen technique for such joints.  相似文献   

16.
樊丁  王斌  李春玲  黄健康  余淑荣 《焊接学报》2015,36(1):15-18,58
采用小功率TIG焊电弧辅助激光热源进行5A06铝合金和热镀锌钢ST04Z对接熔钎焊工艺试验,获得表面成形连续、美观的焊缝.采用SEM,EDS,XRD,拉伸试验机、显微硬度计对熔钎焊接头的微观组织和力学性能进行了研究.结果表明,与单纯激光相比,电弧辅助激光热源改变了焊接过程的温度场分布,从而促进液态铝向钢侧的铺展,所得对接接头最大抗拉强度可达到163 MPa,约为5A06铝合金母材抗拉强度的74%,是激光焊接头强度的1.3倍.接头过渡层形成的金属间化合物以脆硬的Fe2Al5,Fe4Al13为主.拉伸断裂起始于脆性的金属间化合物层,终止于韧窝断裂.  相似文献   

17.
S Sato 《Welding International》2013,27(12):943-948
Summary

This paper deals with the resistance spot weldability of steel to aluminium alloy using an intermediate layer of aluminium clad steel. Five types of clad sheet with various steel/aluminium thickness ratios were produced by hot rolling. The mechanical properties of the clad sheet changed with the thickness ratio and ranged between those of steel and:those of aluminium sheet. The peel strength of the steel/aluminium interfaces was greater than 25 N/mm.

Materials used in spot welding were 0.8 mm thick EDDQ steel sheet, three types of 1.0 mm thick aluminium alloy sheet and the clad sheet mentioned above. Spot‐weldability, including suitable welding current, nugget diameter, tensile shear strength and thickness of the intermetallic compound layer formed at the interface of the clad sheets, changed with the thickness ratio of the clad sheet. From these results, it was concluded that spot‐weldability was affected by the thickness ratio of the clad sheets.

Spot‐weldability was also affected by the alloying elements in the aluminium alloy sheet. Tensile shear strength and nugget diameter varied in various types of aluminium alloy sheet.  相似文献   

18.
Special features of laser welding of aluminium alloys with laser and arc heat sources are investigated. Advantages and shortcomings of these methods are noted. Experiments were carried out to combine laser and arc heat sources for welding aluminium alloys. Equipment for hybrid welding is described. The technological parameters influencing the external formation of the welded joints are determined. Specific conditions for welding 1424 aluminium alloys with a thickness of 4.0 mm are presented. High-quality welded joints were produced by hybrid laser-arc welding in 1424 alloy with a thickness of 4.0 mm.  相似文献   

19.
镁/镀锌钢板CMT熔钎焊连接机制分析   总被引:4,自引:4,他引:0       下载免费PDF全文
采用CMT焊对AZ31B镁合金和HDG60镀锌钢异种材料进行熔钎焊.在试验中,采取了搭接焊的方式,通过调整焊接参数得到最佳焊接成形.使用扫描电子显微镜(SEM)、能谱分析(EDAX)、电子探针、X射线衍射(XRD)及拉伸试验对焊接接头微观连接机制及性能进行研究.结果表明,镁和镀锌钢能够形成良好的搭接接头.焊接接头可以分成焊缝区、结合界面、熔合区.结合面主要有Al,Zn,Mg三种元素,主要相有Al12,Mg17,Mg2Zn11,Al7Zn3及少量的MgFeAlO4复合氧化物.Zn和Al元素对镁钢连接起着关键作用,Zn在焊接接头形成过程中仍有一定的流动作用.在拉伸试验中,焊接接头试样几乎都断裂在熔合区,抗剪强度可达218 MPa.  相似文献   

20.
The lap joints of upper Al alloy sheets (1.0-mm-thick A5052) and lower Zn-coated steel sheets (1.2-mm-thick GI steel or GA steel) were welded using insert steel sheets (0.6-mm-thick SPCC) by a spot welding process with a tool having a spherical ceramic tip, i.e. ‘Friction Anchor Welding.’ As a result, straight (not-rugged) steel projections were formed in the Al alloy sheets for both the GI and GA, while steel projections were not formed for the GI, rugged steel projections were formed for the GA without the insert steel sheets. In addition, the tensile shear strength for the GI was greater than that for the GA. In other words, the tensile shear strengths reached about 3.9 kN/point for the GI and about 3.2 kN/point for the GA, which were greater than those of the welds without the insert steel sheets. On the other hand, the cross tensile strengths for the GI and GA were almost the same, which reached about 2.6 kN/point. Additionally, for the GI, the Zn layer on the GI steel sheet melted and was totally removed due to the pressure and heat caused by the rotating tool, which facilitated the welding between the SPCC and GI steel sheets. For the GA, however, the Zn-Fe layer on the GA steel sheet changed to a solid-liquid mixture and was not completely removed, which prevented the welding between the SPCC and GA steel sheets. Therefore, the thickness of the steel-steel welded region (i.e. the SPCC-GI or the SPCC-GA welded region) for the GI was greater than that for the GA. We estimated that the difference in this thickness is significantly related to the fracture mechanism during the tensile shear test and the cross tensile test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号