首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluated the effect of Ti in the supermartensitic stainless steel (SMSS) on the pitting corrosion in welded joints using gas tungsten arc welding. In the welded SMSS sample, there was martensite grain coarsening in the heat-affected zone (HAZ), and d-ferrite formation at the interface between the base metal and HAZ regions. The presence of Ti in the SMSS prevented grain coarsening and promoted the formation of retained austenite in the HAZ regions. The values of the pitting potentials of SMSS + Ti and SSMS using a cell-pen (designed to reveal the behaviour of localised microstructure in a narrow area) were 0.347 and 0.286 V in the non-welded condition, and 0.374 and 0.183 V in the welded condition, respectively. The corresponding values using the conventional cell were 0.349 and 0.257 V in the non-welded condition and 0.230 and 0.089 V in the welded condition, respectively.  相似文献   

2.
Abstract

The objective of the present study was to investigate the effect of nitrogen additions to the shielding gas on the ferrite content and residual stress in austenitic stainless steels. Autogenous gas tungsten arc (GTA) welding was applied on austenitic stainless steels 304 and 310 to produce a bead on plate weld. The delta ferrite content of the weld metals was measured using a Ferritscope. The residual stress in the weldments was determined using the hole drilling strain gauge method. The present results indicated that the retained delta ferrite content in type 304 stainless steel weld metals decreased rapidly as nitrogen addition to the argon shielding gas was increased. The welding residual stress increased with increasing quantity of added nitrogen in the shielding gas. It was also found that the tensile residual stress zone in austenitic stainless steel weldments was extended as the quantity of added nitrogen gas in the argon shielding gas was increased.  相似文献   

3.
王旭友  雷振  毛辉  杜兵  齐秀滨 《焊接学报》2009,30(12):21-25
利用激光-MAG 复合热源分别进行了 T4003 和 TCS 铁素体不锈钢的焊接试验研究.通过与常规 MAG 焊的对比,测试分析了两种焊接方法的焊缝成形、接头的低温冲击韧性及接头的微观组织.结果表明,激光-MAG 复合热源焊接易于实现铁素体不锈钢的单面焊双面成形,与常规 MAG 焊相比,其焊接效率可以提高 1 倍以上.利用激光电弧复合热源可以提高铁素体不锈钢焊接接头的低温冲击韧性,较常规 MAG 焊,复合焊接头的低温冲击韧性可以提高 50%以上.激光-MAG 复合热源焊接接头热影响区粗晶区组织宽度明显小于常规 MAG 焊接头的粗晶区宽度.
Abstract:
Laser-MAG hybrid welding of T4003 and TCS ferrite stainless steels was studied. Through comparing with the conventional MAG welding of ferrite stainless steel, the results of the two welding methods including the appearance of weld, impact toughness under low temperature and the microstructure of the butt joints were tested and analysed. The analysing results show that it is easy to get one-side welding with back by laser-MAG hybrid welding. Comparing with the conventional MAG welding, the welding efficiency of ferrite stainless steel by laser-MAG hybrid welding can be improved more than one times, the low temperature impact toughness of the joints by laser-MAG hybrid welding can be improved over 50% than that of conventional MAG welding joints, and the width of coarsegrained zone of hybrid welding joints is thinner than that of MAG welding joints.  相似文献   

4.
Abstract

Shielded metal arc welding electrodes of a modified E316-15 austenitic stainless steel, for service at 673–823 K with delta ferrite in the range of 3–7 ferrite number, have been developed indigenously for welding of 316L(N) stainless steel structural materials for the Indian Prototype Fast Breeder Reactor. Delta ferrite content in weld metals for high temperature service is restricted for limiting the formation of embrittling secondary phases during service. To study the effect of high temperature exposure on microstructure and mechanical properties, the 316 weld metal was aged at three different temperatures of 923, 973 and 1023 K, for various durations up to 500 h. The activation energy for the transformation of delta ferrite has been estimated to analyse the mechanism associated with the micro structural changes that led to the deterioration in toughness on elevated temperature aging of this weld metal.  相似文献   

5.
2205双相不锈钢的激光-MIG复合焊接头性能   总被引:1,自引:0,他引:1       下载免费PDF全文
常规的高能束焊接方法因焊后冷速较快易导致双相不锈钢焊缝及热影响区两相比例失衡,接头性能恶化.采用激光-MIG复合焊接方法对2205双相不锈钢进行焊接,焊后对接头微观组织、力学性能和腐蚀性能分析发现,焊缝及热影响区铁素体相比例控制在40%~70%合理范围内,接头硬度和抗拉强度高于母材,焊缝、熔合线、热影响区的~40℃冲击...  相似文献   

6.
Super-duplex stainless steels have an excellent combination of mechanical properties and corrosion resistance at relatively low temperatures and can be used as a coating to improve the corrosion and wear resistance of low carbon and low alloy steels. Such coatings can be produced using weld cladding. In this study, pulsed current gas tungsten arc cladding process was utilized to deposit super-duplex stainless steel on high strength low alloy steel substrates. In such claddings, it is essential to understand how the dilution affects the composition and ferrite number of super-duplex stainless steel layer in order to be able to estimate its corrosion resistance and mechanical properties. In the current study, the effect of pulsed current gas tungsten arc cladding process parameters on the dilution and ferrite number of super-duplex stainless steel clad layer was investigated by applying response surface methodology. The validity of the proposed models was investigated by using quadratic regression models and analysis of variance. The results showed an inverse relationship between dilution and ferrite number. They also showed that increasing the heat input decreases the ferrite number. The proposed mathematical models are useful for predicting and controlling the ferrite number within an acceptable range for super-duplex stainless steel cladding.  相似文献   

7.
To study the effect of chemical composition on microstructural features and mechanical properties of dissimilar joints between super duplex and austenitic stainless steels, welding was attempted by gas tungsten arc welding process with a super duplex (ER2594) and an austenitic (ER309LMo) stainless steel filler metal. While the austenitic weld metal had vermicular delta ferrite within austenitic matrix, super duplex stainless steel was mainly comprised of allotriomorphic grain boundary and Widmanstätten side plate austenite morphologies in the ferrite matrix. Also the heat-affected zone of austenitic base metal comprised of large austenite grains with little amounts of ferrite, whereas a coarse-grained ferritic region was observed in the heat-affected zone of super duplex base metal. Although both welded joints showed acceptable mechanical properties, the hardness and impact strength of the weld metal produced using super duplex filler metal were found to be better than that obtained by austenitic filler metal.  相似文献   

8.
铁素体作为奥氏体、马氏体和双相不锈钢的一种相组织,其含量直接影响不锈钢的焊接性、耐蚀性、力学性能和加工性,在其测定时往往由于腐蚀问题导致结果误差偏大。从检测标准出发,通过列举国内外目前针对铁素体含量及分布状态的表征方法,采用化学和电解两类方法进行铁素体腐蚀,从溶液配比、腐蚀温度、腐蚀时间、溶液可重复使用性和腐蚀效果等方面进行对比分析。结果表明:采用氢氧化钠水溶液电解铁素体整体效果较好,呈现红褐色,同时可以通过其在该溶液电解腐蚀显现的特征颜色进行该相的识别。  相似文献   

9.
The welding of Mo–Cu composite and 18-8 stainless steel was carried out by Tungsten Inert Gas welding process with Cr–Ni fillet wires. The microstructure, element distribution, phase constituents and microhardness of the joint were analysed. The results indicate that austenite and ferrite phases were obtained in the weld metal. Austenite and delta ferrite structures were observed in the fusion zone near 18-8 stainless steel. Cu agglomeration regions formed in Mo–Cu composite heat affected zone during welding. The microhardness near the fusion zone at Mo–Cu composite side increased from weld metal to fusion zone, and the peak value appeared near the boundary between fusion zone and Mo–Cu composite due to the generation of high hardness and brittleness Fe–Mo intermetallic compounds. The phase constituents near the fusion zone at Mo–Cu composite are Mo, Cu and γ-Fe (Ni), Cu3.8Ni and the Fe–Mo compound Fe0.54Mo0.73.  相似文献   

10.
The extended use of powder metal components can be improved by the use of welding joining methods. This work investigates the weldability of iron-based powder metal alloys (Fe–Ni, Fe–Ni–P alloys) using the pulsed gas tungsten arc welding process (GTAW) with three different filler metals (AWS R 70S-6, AWS R 309L, AWS R Fe–Ni). Results revealed that the Fe–Ni powder metal alloy does not present any metallurgical difficulty concerning the weldability for all types of filler metal studied. The Fe–Ni–P powder metal alloy, microstructural examinations showed that, despite its high content of phosphorus (0.25 wt%), the utilization of pulsed GTAW process with stainless steel 309L filler metal resulted in welds free of porosities and solidification cracks. Metallographics examinations suggest that the absence of solidification cracks in this alloy can be mainly attributed to the presence of delta ferrite in the stainless steel weld metal which absorbed part of the phosphorus and significantly reduced the formation of the Fe3P low-melting eutectic in the weld pool during cooling. In contrast, solidification cracks were observed when joining the Fe–Ni–P powder metal alloy using RFe–NI and R70S-6 filler metals. Hardness tests carried out indicated a heat affected zone (HAZ) with no excessive hardening for all alloys studied. Furthermore, tensile tests showed that the fractures always occurred in the base metal with tensile strength slightly superior to the value of unwelded samples. As a result, this investigation showed the feasibility of joining iron-based powder metal alloys by the pulsed GTAW process since a rigid control of the heat input is implemented together with an adequate choice of the filler metal, especially when welding the Fe–Ni–P alloy.  相似文献   

11.
以TCS345铁素体不锈钢名义熔合线处的缺口冲击韧度为研究对象,采用一次回归正交试验,考察脉冲熔化极气体保护焊(pulse gas metal arc welding简称GMAW-P)脉冲工艺参数对名义熔合线处缺口冲击韧度的影响,分析脉冲电流、脉冲时间、脉冲频率、焊接速度及其交互作用对焊接接头名义熔合线缺口冲击韧度的影响规律.结果表明,TCS不锈钢焊接热影响区的组织为铁素体+马氏体.运用MATLAB优化函数对焊接工艺参数进行优化,优化结果为脉冲电流450A、脉冲时间2.3ms、脉冲频率250Hz、焊接速度500mm/min.  相似文献   

12.
邢宪峰 《焊接》2007,(6):56-58
通过对新型铁素体不锈钢Nirosta4003进行常规焊接工艺试验,了解了该种材料的焊接性,针对供货厂家提供的焊接材料,进行了对比焊接工艺试验,确定了匹配的焊接材料与合适的焊接工艺参数,制定出合理的焊接工艺方案,保证了产品的制造质量.该材料已成功地应用于出口澳大利亚力拓公司矿石车的生产.  相似文献   

13.
超级马氏体不锈钢焊丝MAG焊熔敷金属冲击性能优化   总被引:2,自引:2,他引:0       下载免费PDF全文
白鹤滩百万千瓦水电机组全部采用国产HS13/5L焊丝进行焊接,成功实现了中国高端装备制造的重大突破. HS13/5L焊丝为水轮机转轮同材质焊接材料,属于13Cr型超级马氏体不锈钢,然而其MAG焊熔敷金属的韧性低于母材,针对此问题,将现有的MAG平焊焊接工艺调整为立向上焊焊接工艺,以提高熔敷金属的冲击韧性.对比分析了平焊、立向上焊熔敷金属的微观组织和冲击性能. 结果表明,立向上焊位置回火热处理态熔敷金属的室温冲击吸收能量达到120 J以上,比平焊位置提高了约40%. 两种焊接位置下的熔敷金属微观组织的相组成无明显差异,焊态组织为淬火马氏体 + 残余奥氏体 + δ-Fe,回火热处理态组织为回火板条马氏体 + 逆变奥氏体 + δ-Fe.立向上焊熔敷金属中的氧化夹杂物密度比平焊位置降低了约22%.平焊和立向上焊熔敷金属冲击断口整体呈现出韧性断裂的特征,立向上焊位置熔敷金属的韧性优于平焊位置.  相似文献   

14.
Phase transformations in dissimilar resistance spot welds of dual phase steel and ferritic stainless steel are analysed. In contrast to a full martensitic microstructure predicted by the Schaeffler and Balmforth diagrams, a ferrite–martensite microstructure was observed in the fusion zone. The formation of ferrite phase in the fusion zone can be attributed to the rapid cooling rate of resistance spot welding, which suppresses the post-solidification ferrite–austenite transformation. The grain growth and martensite formation were main metallurgical features of the heat affected zone of ferritic stainless steel side. Microstructure gradient of heat affected zone in dual phase steel side was dictated by martensitic transformation. The effect of weld thermal cycle on the mechanical performance of the joint is discussed.  相似文献   

15.
Supermartensitic stainless steels (SMSSs) allow high mechanical strength with better corrosion resistance and toughness than conventional martensitic stainless steels. The SMSS steels with 12–13%Cr have been studied and applied in the oil and gas offshore production. The increase of Cr content, and the addition of Mo and W is now being investigated to increase mechanical and pitting corrosion resistance. In this work, a new 17%Cr steel, with Mo and W additions was studied. Depending on the final tempering treatment, the steel has a complex microstructure of austenite, ferrite, martensite and precipitates. The pitting corrosion resistance also depends on the microstructure produced by tempering. It was found that the pitting potential slightly decreases with the increase of tempering temperature and is further decreased by the double-tempering treatment. The pits initiate and grow preferentially in the martensite or tempered martensite islands, due to the lower Cr, Mo and W contents of these areas.  相似文献   

16.
Different welding thermal cycles from single-pass to triple-pass were performed on two kinds of 2304 duplex stainless steel through Gleebe thermal–mechanical simulator. The corresponding microstructure was observed, while the pitting corrosion resistance was investigated in 1.0 M NaCl by potentiostatic critical pitting temperature (CPT). The results showed that single-pass welding deteriorated microstructure and pitting corrosion resistance significantly. As the welding pass increased, the ferrite content decreased and CPT increased. However, CPT was still lower than that of the base metal. Nitride precipitated at the boundary between ferrite and austenite phase for low-alloyed 2304 after the single-pass welding thermal cycle.  相似文献   

17.
Weld cladding is a process for producing surfaces with good corrosion resistant properties by means of depositing/laying of stainless steels on low-carbon steel components with an objective of achieving maximum economy and enhanced life. The aim of the work presented here was to investigate the effect of auxiliary preheating of the solid filler wire in mechanized gas metal arc welding (GMAW) process (by using a specially designed torch to preheat the filler wire independently, before its emergence from the torch) on the quality of the as-welded single layer stainless steel overlays. External preheating of the filler wire resulted in greater contribution of arc energy by resistive heating due to which significant drop in the main welding current values and hence low dilution levels were observed. Metallurgical aspects of the as welded overlays such as chemistry, ferrite content, and modes of solidification were studied to evaluate their suitability for service and it was found that claddings obtained through the preheating arrangement, besides higher ferrite content, possessed higher content of chromium, nickel, and molybdenum and lower content of carbon as compared to conventional GMAW claddings, thereby giving overlays with superior mechanical and corrosion resistance properties. The findings of this study not only establish the technical superiority of the new process, but also, owing to its productivity-enhanced features, justify its use for low-cost surfacing applications.  相似文献   

18.
采用金相、X射线衍射、极化曲线测试、力学性能测试等方法研究了固溶处理对S32750双相不锈钢焊接钢管焊缝性能、组织的影响。结果表明,固溶处理能显著改善焊缝的低温冲击韧度和耐腐蚀性能;固溶处理前后焊缝各区域的相结构相同,但铁素体和奥氏体含量有差异,这种差异对焊缝耐蚀性的影响不大。  相似文献   

19.
The microstructure, mechanical and corrosion resistance properties of 445J2 ultra pure ferritic stainless steel thin plate joints conducted by the pulsed current gas tungsten arc welding (PCGTAW) were discussed in this paper. In order to avoid weld defects, the appropriate welding process was adjusted. The joints were subjected to optical microscopy, transverse static tensile, plastic deformation, intergranular corrosion and electrochemistry corrosion tests. The results indicated that the weld zone (WZ) is characterized with columnar grains and equiaxed grains and the heat-affected zone (HAZ) shows coarse ferrite grains due to the rapid solidification of thin plate welding. The PCGTAW joint exhibited acceptable mechanical properties and equivalent corrosion resistance properties as the base metal.  相似文献   

20.
Corrosion of 316L stainless welds in urea synthesis systems is not due to preferential attack of ferrite, but to dissolution of sigma phase formed from ferrite by successive weld passes. Proper element balancing of 316L filler metal, or welding with Alloy 20 or a high nitrogen 316 weld eliminates this problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号