首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
梁伟  周亮  孙晓露  邓德安 《焊接学报》2017,38(3):103-106
文中以汽车制造中常用的1 mm厚的薄板为分析对象,采用热-弹-塑性有限元分析了焊缝长度对固有变形分布特征的影响,通过比较热-弹-塑性有限元法及固有应变法预测的变形结果,定量分析了焊缝长度对固有应变法预测超薄板焊接变形时计算精度的影响.结果表明,当焊缝长度达到一定临界长度时,固有应变法可适用于板厚为1 mm左右超薄板焊接接头的焊接变形预测.  相似文献   

2.
It is well known that weld distortion, which has a negative influence on material properties, structural fabricability and structural integrity, should be controlled appropriately. There are many methods to control or reduce weld distortion, but most of them involve some costly process in addition to welding. In-process control of weld distortion becomes more preferable than post-welding process or other methods, when manufacturing efficiency is considered. In recent years, in-process control welding by additional cooling has been proposed as one of techniques for reducing weld distortion and partially applied for thin-plate structure in industries. However, the effectiveness of additional cooling method has not yet been fully clarified. In this study, the effectiveness of additional cooling method and appropriate cooling condition for effective reduction in weld distortion are investigated by three-dimensional thermal elastic–plastic analysis. In addition, the effect of locally cooled temperature distribution on generation behaviour of plastic strain is discussed. As a result, it is concluded that the effectiveness of additional cooling and appropriate cooling condition for reduction in weld distortion are dependent on weld distortion under consideration and welding conditions. Especially, it is necessary for reduction in weld distortion to set the cooling torch at the appropriate position. For example, in order to reduce angular distortion effectively, the appropriate cooling position is dependent on the mechanical melting length during welding.  相似文献   

3.
焊接应力变形原理若干问题的探讨(二)   总被引:4,自引:2,他引:2       下载免费PDF全文
王者昌 《焊接学报》2008,29(7):69-72
提出焊接残余应力形成和消除原理:焊接残余应力不是压缩塑性应变引起的,而是由于焊缝和近缝区金属在"力学熔点"及以下温度冷却收缩受阻产生的;消除焊接残余应力不是产生拉伸塑性应变以减少、抵消和补偿压缩塑性应变,而是将残余弹性应变转变为塑性应变;消除焊接残余应力并不是必须去除固有应变,部分去除或完全不去除固有应变也能完全消除残余应力.提出随焊后热精确控制应力变形焊接法,既可实现无应力焊接和无应力无变形焊接,也可实现适当压应力无变形焊接和较大压应力微变形焊接;并对传统方法与有限元法进行了分析比较.  相似文献   

4.
Abstract

A new technique using non-contact electromagnetic forces has been proposed for controlling welding buckling distortion and residual stresses in welded thin plates. The experimental results show that the method can successfully eliminate the buckling distortion and reduce the residual stresses. Three-dimensional finite element modelling has been developed to study the evolution of the stress and strain throughout the welding and electromagnetic impacts. The predicted welding distortion and residual stresses are in good agreement with the experimental results. The numerical analyses show that the reduction in distortion and stress is a result of the change of the plastic strain field in the weld region: electromagnetic impacts reduce longitudinal compressive plastic strain in the local region near the weld, and even produce the tensile plastic strain. Moreover, it is found that the residual stress can promote the changes of the longitudinal plastic strain state under electromagnetic impact.  相似文献   

5.
提出了旋转挤压控制薄板焊接变形的新方法,它足利用特定形状的挤压头对焊缝及近缝区金属进行旋转挤压,产生拉伸塑性应变,减小甚至抵消残余压缩塑性应变,以此来消除焊接残余变形.该方法处理后的焊道表面平整光滑,减小了应力集中.结果表明,旋转挤压法能将薄壁构件焊接变形降到非常低的水平,选择适当的工艺参数,该方法能将焊接残余变形控制在常规焊接状态的3%以下.旋转挤压控制薄板焊接变形的效果与多个工艺参数有关,只有当各个工艺参数取值适当且匹配良好时,才能取得良好的焊接变形控制效果.  相似文献   

6.
Abstract

A stress and distortion mitigation technique for Gas Tungsten Arc Welding (GTAW) of titanium alloy Ti–6Al–4V thin sheet is presented. The proposed welding technique incorporates a trailing heat sink (an intense cooling source) with respect to the welding torch, and it is also called the Dynamically Controlled Low Stress No-Distortion (DC-LSND) technique. The development of this mitigation technique is based on both detailed welding process simulation using the advanced finite element technique and systematic laboratory experiments. The finite element method is used to investigate the detailed thermomechanical behaviour of the weld during conventional GTAW and DC-LSND GTAW. With detailed computational modelling, it is found that by the introduction of a heat sink at some distance behind the welding arc, a saddle shaped temperature field is formed as a result of the cooling effects of the heat sink; the lowest temperature exists in the zone where the heat sink is applied. High tensile action on the surrounding zone is generated by abrupt cooling and contraction of the metals beneath the heat sink, which increases the tensile plastic strain developed during the cooling process and decreases the compressive plastic strain developed in the heating process, and therefore mitigates the residual stresses and plastic strains within and near the weld. The experimental results confirmed the effectiveness of the DCLSND technique and the validity of the computational model. With a proper implementation of the DC-LSND technique, welding stress and distortion can be reduced or eliminated in welding titanium alloy Ti–6Al–4V thin sheet, while no appreciable detrimental effects are caused on the mechanical properties of welded joints by applying the heat sink in the GTAW process.  相似文献   

7.
铝合金薄板焊件纵向塑性应变场的数值模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
利用弹塑性有限元分析软件对普通焊件的纵向塑性应变场进行了模拟.结果表明,对于尺寸为200 mm×100 mm ×2 mm的2A12T4铝合金薄板填丝对接焊件,其焊缝部位只存在纵向拉伸塑性应变;在靠近焊缝的区域,既存在纵向压缩塑性应变,也存在纵向拉伸塑性应变;在焊缝长度方向纵向残余塑性应变的分布不均匀,在靠近起弧端和收弧端的区域呈现复杂的分布特征.焊接过程中温度场的变化和热源旁侧金属受力状况的不同是近缝区金属纵向塑性应变不均匀分布的原因.  相似文献   

8.
Both experimental method and numerical simulation technology were employed to investigate welding residual stress distribution in a SUS304 steel multi-pass butt-welded joint in the current study. The main objective is to clarify the influence of strain hardening model and the yield strength of weld metal on prediction accuracy of welding residual stress. In the experiment, a SUS304 steel butt-welded joint with 17 passes was fabricated, and the welding residual stresses on both the upper and bottom surfaces of the middle cross section were measured. Meanwhile, based on ABAQUS Code, an advanced computational approach considering different plastic models as well as annealing effect was developed to simulate welding residual stress. In the simulations, the perfect plastic model, the isotropic strain hardening model, the kinematic strain hardening model and the mixed isotropic-kinematic strain hardening model were employed to calculate the welding residual stress distributions in the multi-pass butt-welded joint. In all plastic models with the consideration of strain hardening, the annealing effect was also taken into account. In addition, the influence of the yield strength of weld metal on the simulation result of residual stress was also investigated numerically. The conclusions drawn by this work will be helpful in predicting welding residual stresses of austenitic stainless steel welded structures used in nuclear power plants.  相似文献   

9.
Abstract

A newly developed low transformation temperature welding wire, of which the transformation start temperature is lower than that of conventional welding wires, was applied to fabrication of fillet welded T joints. The welding angular distortion and the temperature profile of the weld metal were continuously measured during the welding process. The angular distortion of the fabricated T joint was reduced when the weld metal reached the martensitic transformation start temperature. The residual angular distortion was less with the low transformation temperature welding wire than that with the conventional welding wires. The welding distortion of T joints was calculated by a numerical simulation with consideration of the effect of phase transformation under weld thermal cycles. The welding distortion was reproduced with high accuracy in the numerical simulation. Results of the numerical simulation also determined that there was a direct correspondence between the transformation expansion of the weld metal and the angular distortion.  相似文献   

10.
The reducing effect of the angular distortion in T-type full penetrated welded joints fabricated by laser-arc hybrid welding was investigated. The angular distortion caused by the laser-arc hybrid welding were measured and compared with one caused by CO2 gas shielded-arc welding. As a result, the amount of angular distortion by laser-arc hybrid welding was the same level as one in the case of forming a leg size of F1 grade regulated by the Common Structural Rules for Bulk Carriers by applying arc welding. In addition, numerical analysis of the welding deformation was carried out by thermal elastic–plastic finite element analysis and these results were generally consistent with the measured results. Moreover, the effect on the FE result of the penetrated shape is discussed.  相似文献   

11.
An experimental method based on digital image correlation technology is proposed to measure welding buckling distortion for bead-on-plane with tungsten inert gas welding. This study focuses on the effect of welding heat input for dynamic buckling and full-field distribution. The experimental results demonstrate that heat input has a great influence on welding buckling distortion. The longitudinal shrinkage of the weld bead is in direct proportion to the heat input. In the weld bead, the longitudinal plastic strain is small, while the transverse strain is large. The key points on the line, that is perpendicular to the bisector of the weld bead, experience a distorted trend of positive increase, constant displacement, negative increase and stable displacement, although the heat inputs are different.  相似文献   

12.
In the present study, the detailed welding distortion of bead welded plates under temporary tacking state and released state was predicted by thermal elastic-plastic finite element model (FEM) and also measured by the digital image correlation (DIC) method. It was found that the residual welding angular distortion can be reduced to about 50–60% by temporary tacking, while the residual transverse shrinkage and longitudinal shrinkage are less affected. Further, the welding distortion with different ratios of temporary tacking length to weld length for various dimensions of bead welded plates was quantitatively investigated by FEM. The inherent deformations which are described by the integrated values of residual plastic strains were proved to be the same before and after releasing the temporary tacking. The effect of temporary tacking on the welding distortion and inherent deformation were analysed in details.  相似文献   

13.
关于焊接残余应力测试方法的研究   总被引:3,自引:0,他引:3       下载免费PDF全文
王维容 《焊接学报》1989,10(3):181-187
  相似文献   

14.
In order to elucidate distortion and residual stress generated by welding of high strength steel (HT780) by laser beam, a series of experiments and analyses were carried out. The angular distortion generated by bead-on-plate welding was V-shaped and its magnitude was about 2 mm. The longitudinal bending distortion was extremely small. On the surface of the plate, the residual stress component in the welding direction was tensile and it was smaller than the yield stress in the weld metal. The residual stress was almost zero outside the weld metal. The phase transformation range in the cooling stage and the temperature dependency of mechanical properties were obtained. The mechanical properties in the phase transformation range in the cooling stage could not be specified due to transformation expansion. Therefore, they were idealized by considering transformation expansion and transformation superplasticity. The validity of the idealized mechanical properties was verified by simulating the experiment by the thermal elastic–plastic analysis. It was elucidated that the welding out-of-plane distortion and tensile residual stress were largely controlled by phase transformation in the cooling stage, although the bead width of laser beam welding was extremely narrow.  相似文献   

15.
关于焊接残余应力消除原理的探讨   总被引:24,自引:11,他引:24       下载免费PDF全文
王者昌 《焊接学报》2000,21(2):55-58
介绍了机械拉伸法、温差拉伸法、滚压法和低应力无变形焊接技术消除应和原理的传统观点,认为焊接时焊接时生压缩塑性变形,消除应力的原理在于用拉伸塑性变形抵消、补偿压缩塑性变形。本文提出新的应力应变发展过程,提出焊缝不存在压缩塑性变形,一直受拉伸、熔合线附近处于脆性温度时承受较大的纵向拉伸应变,随着远离熔合线,应变陡降。焊缝消除应力的原理在于用塑性应变减少甚至找消弹性应变,在一般情况下是用拉伸塑性应变减少  相似文献   

16.
关于焊接残余应力形成机制的探讨   总被引:6,自引:4,他引:6       下载免费PDF全文
游敏  郑小玲  余海洲 《焊接学报》2003,24(2):51-54,58
分析了关于焊接残余应力形成过程描述的传统观点的局限性和不足,指出材料力学的“截面法”不能用于分析横向残余应力分量。认为在不考虑材科相变的前提下,焊缝金属冷却时收缩受制也是导致焊接残余应力产生的重要原因。虽然残余压缩应变和残余收缩应变在导致焊接残余应力产生的作用方面是等价的,但其机理却有本质的不同,区别二者有利于研究和开发新的焊接残余应力调控技术。对固有应变理论进行了分析和补充,认为应统一到拉伸塑性应变上。用钢板上堆敷锡钎焊焊道的方法,在母材温升值低于塑性应变所需温差的条件下,由盲孔法测得了板上大范围分布的高值残余应力,且因焊道和母材的线膨胀系数差异较大,其应变测试值与环境温度有关。  相似文献   

17.
The new technology of welding with impacting rotation is put forward to decrease the wave-like deformation of the TC4 thin plate weldment.The thermal stress and strain are vital to understand the mechanism of controlling the wave-like deformation.In order to know the development of internal thermal stress and strain,finite element method is utilized for the stress and strain are difficult to be investigated by experimental methods during the welding process.Temperature field,thermal stress evolution and distortion of thin plate are compared with the test results such as weld thermal cycle,residual stress sectioning measurement,and the deflection of the thin plate respectively.By the finite element analysis and test results verification,the mechanism of the technology to control the wave-like deformation is brought forward,non-uniform thermal elastic strain between compressive plastic region and elastic extensive region is diminished by a certain amount of extensive plastic deformation by welding with impacting rotation process.  相似文献   

18.
王鹏  谢普  赵海燕  关桥 《焊接学报》2013,(12):63-66
采用数值模拟方法对低碳钢、不锈钢及钛合金3种材料薄板电弧焊接塑性应变演变过程进行了分析.结果表明,在焊接过程中,焊缝及近缝区内无论是纵向塑性应变还是横向塑性应变均为压缩塑性应变,熔池凝固及高温区冷却产生的拉伸卸载不足以完全抵消加热过程产生的压缩塑性应变,最终残留在焊缝及近缝区内的塑性应变仍保持压缩状态,压缩塑性区的宽度明显宽于材料"力学熔化"区宽度.  相似文献   

19.
ABSTRACT

To understand the cause of compressive residual stress in welded joints, we analysed by numerical analysis the effect of welding pass sequence using low transformation temperature (LTT) welding materials on residual stress around the weld toe of boxing fillet welded joints. It was determined by numerical analysis that the produced compressive residual stress and the influence of the stiffeners are reduced in the equivalent position of the weld toe in a fillet welded joint because of the influence on the behaviour of the stiffener in the weld being due to residual stress distribution around the weld toe. The residual stress reduction method of extending the length of the welded bead and releasing the weld toe from the stiffener, similar to the concept of discarding a bead to reduce tensile residual stress, was effective in fillet welded joints. Numerical analysis of the relationship between residual stress around the weld toe and width of the weld bead in the bead-on-plate welding model clarified that compressive residual stress can be introduced around the weld toe by having a wide width weld bead. In addition, a fully penetrated welded joint was very effective for causing compressive residual stress around the weld toe.  相似文献   

20.
0IntroductionApplication of welding process in fabricating largestructures offers several advantages over mechanical joiningmethods such as improved structural performance,flexibil-ity of design,weight reduction and cost savings etc.Inship and automobile …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号