首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
为了解南美白对虾壳(PV-S)与虾肉(PV)水分活度(aw)、含水率与温度关系,研究了PV-S与PV的吸附等温线及热力学性质。PV-S与PV水分吸附分别呈Ⅱ型和Ⅲ型等温线,描述PV-S与PV吸附特性的最适模型分别为Blahovec-Yanniotis和GAB模型。PV-S与PV净等量吸附热、微分熵随含水率增加而降低。扩张压力随aw增加而升高,随温度升高而降低。PV积分焓随含水率增加而降低,PV-S积分焓随含水率增加呈先增加后降低趋势。PV积分熵随含水率增加而增加,PV-S积分熵随含水率增加呈先降低后增加趋势。PV-S与PV水分吸附过程为焓驱动且符合熵-焓互补理论。含水率0.20 g/g时,PV-S净等量吸附热、微分熵高于PV。PV扩张压力与积分熵低于PV-S,而PV积分焓则高于PV-S。含水率为0.07 g/g时,PV-S积分焓与积分熵分别达到最大值(1.91 k J/mol)与最小值[-14.34 J/(mol K)]。研究结果可为南美白对虾干制工艺及干制品贮藏稳定性提供科学依据。  相似文献   

2.
研究了喷雾干燥、冷冻干燥对桑葚粉吸附等温线与热力学性质的影响,探讨了2种干燥方式对桑葚粉玻璃化转变温度(glass transition temperature,T_g)与状态图的影响,比较了2种干燥方式所得桑葚粉的贮藏稳定性。结果表明,桑葚粉水分吸附等温线为Ⅲ型。Blahovec-Yanniotis为描述桑葚粉水分吸附特性的最适模型。桑葚粉的净等量吸附热与微分熵随含水率增加而降低并逐渐趋于恒定值;扩张压力随温度升高而降低,但随水分活度(water activity,aw)增加而升高;积分焓随含水率增加而降低并逐渐趋于恒定;但是积分熵随含水率增加先降低至最低值,而后升高并逐渐趋于恒定。桑葚粉水分吸附遵循熵焓互补理论,该过程为焓驱动、非自发过程。相同含水率/aw时,喷雾干燥桑葚粉的净等量吸附热、微分熵、积分熵高于冷冻干燥桑葚粉,但积分焓低于冷冻干燥桑葚粉。桑葚粉的T_g随含水率增加而降低,相同含水率时,冷冻干燥桑葚粉的T_g略高于喷雾干燥桑葚粉。25℃下,喷雾干燥与冷冻干燥桑葚粉的临界水分活度分别为0.095、0.115,临界含水率分别为0.076 1、0.079 2 g/g。  相似文献   

3.
为了解花生壳与花生仁的含水率、水分活度(a_w)与温度的关系,提高花生的贮藏稳定性。研究花生壳与花生仁在10、20、30℃时的吸附等温线;探讨花生壳与花生仁的净等量吸附热(q_(st))、微分熵(S_d)、扩张压力、积分熵、积分焓、熵-焓互补、玻璃化转变温度(T_g)等热力学特性。结果表明,花生壳与花生仁的水分吸附呈Ⅲ型等温线。温度一定时,花生壳与花生仁的干基含水率随a_w增加而增加。描述花生壳与花生仁吸附特性的最适模型为GAB模型。花生壳与花生仁的q_(st)与S_d均随含水率增加而降低。扩张压力随a_w增加而升高,但随温度升高而降低。积分焓随含水率增加而降低,而积分熵随含水率增加而升高。花生壳的q_(st)和S_d均高于花生仁,而同一温度条件下花生仁的扩张压力高于花生壳。含水率相同时,花生仁积分焓低于花生壳,而花生仁的积分熵则高于花生壳。花生壳与花生仁水分吸附过程均为焓驱动、自发过程。花生壳与花生仁的T_g随含水率增加而降低,相同含水率时,花生壳的T_g值高于花生仁。根据状态图得到温度为10℃时,花生壳与花生仁的临界水分活度与临界含水率分别为0.80、0.175 4 g/g与0.68、0.095 5 g/g。研究结果可为花生干制工艺及其干制品贮藏稳定性提供理论依据。  相似文献   

4.
研究了黄秋葵在不同温度和水分活度(a_w)范围内的吸附等温线。探讨了黄秋葵的热力学性质,测定了黄秋葵的玻璃化转变温度(Tg),建立了黄秋葵的状态图。结果表明:黄秋葵的水分吸附等温线为Ⅲ型,平衡干基含水率随温度升高而降低,随a_w增加而增加。GAB模型为描述黄秋葵水分吸附特性的最适模型。黄秋葵的净等量吸附热、微分熵与积分焓随含水率增加而降低。积分熵为负值,且随着含水率增加而升高。扩张压力随a_w增加而升高。黄秋葵的水分吸附过程遵循熵焓互补理论,其过程为熵驱动、自发过程。黄秋葵的Tg随含水率增加而降低。根据状态图,得到黄秋葵最大冷冻浓缩溶液时的玻璃化转变温度为-61.14℃,对应的溶质含量为0.7263 g/g(即非冻结水含量为0.2737 g/g)。  相似文献   

5.
为提高菊花粉的贮藏稳定性,分别在20、30℃和40℃下,采用静态称量法对黄山贡菊粉和金丝皇菊粉的水分吸附等温线进行研究,同时探讨水分吸附过程净等量吸附热、微分熵、熵-焓互补理论、固体单位吸附表面积及有效孔径等热力学特性.结果表明,黄山贡菊粉和金丝皇菊粉的水分吸附遵循Ⅱ型等温线.Peleg模型最适合描述菊花粉水分吸附特性...  相似文献   

6.
为了给方便米粉的加工和贮藏过程提供理论指导,根据吸附原理,在环境温度分别为15、25 ℃和35 ℃时,采用静态称量法研究方便米粉的吸附等温线。采用7 个常见的非线性回归方程对吸附实验进行拟合,以决定系数、平均相对偏差和标准估计误差为评价指标,确定最佳拟合模型及其参数,探讨方便米粉水分吸附过程中净等量吸附热、微分吸附熵和焓熵互补等热力学性质的变化。结果表明,方便米粉的水分吸附特性属于II型等温线,Peleg和GAB模型都适合描述方便米粉的水分吸附特性。用GAB模型拟合得到的单分子层水分含量X0在15、25 ℃和35 ℃下分别为9.23%、8.34%和7.65%(干基)。在水分吸附过程中,方便米粉的净等量吸附热和微分吸附熵都会随着平衡水分含量的升高而明显下降;同时,存在焓熵补偿现象;根据实验结果绘制净等量吸附热与微分吸附熵的关系图,计算获得方便米粉的吸附过程属于焓驱动和自发过程。本研究对方便米粉贮藏条件选择和进一步评估不同贮藏条件下方便米粉的贮藏期具有指导作用。  相似文献   

7.
以龙眼果粉为对象,利用静态测量法测定其在不同温度下的吸湿等温线,探究在不同含水率下龙眼果粉的X射线衍射图谱及玻璃化转变温度,并通过数学方程计算其热力学特性参数,以揭示龙眼果粉的水分吸附特性。结果表明,龙眼果粉的吸湿等温线为Ⅲ型等温线,Peleg模型是龙眼果粉吸湿等温线的最佳拟合模型。在水分活度(water activity,Aw)>0.69时,龙眼果粉水分吸附量显著增加,导致糖类晶体结构消失。龙眼果粉的吸附过程符合熵焓互补理论,其吉布斯自由能为1 586.6 J/mol>0,表明可通过控制环境条件来控制龙眼果粉的吸附过程。干基含水率从0.054 g/g上升到0.350 g/g时,龙眼果粉的玻璃化转变温度起始点从14.6℃降低至-26.5℃,其终点从39.1℃下降至-5.8℃。25℃下龙眼果粉的理论最佳贮藏Aw为0.086,对应的干基含水率为0.049 5 g/g。该研究结果可为龙眼果粉贮藏条件的选择提供参考。  相似文献   

8.
运用吸附原理,在水分活度为0.109~0.982条件下,研究冬瓜干制品分别在10℃,20℃,30℃,40℃,50℃和60℃时的水分吸附等温线;采用7种模型对实验数据进行拟合,通过对模型的决定系数(R2)、均方根误差(RMSE)和残差平方和(RSS)进行比较,确定描述冬瓜干制品吸附等温线的最优模型;通过不同温度下冬瓜干制品吸附等温线数据,确定净等量吸附热.研究结果表明:冬瓜干制品的水分吸附呈Ⅲ型等温线,且在相同的水分活度时,平衡含水率随着温度的升高而下降;Peleg模型为描述冬瓜干制品吸附等温线的最优模型;冬瓜干制品的净等量吸附热随着平衡含水率的增加而降低,在较高含水率(50%左右)时趋近于0.  相似文献   

9.
《食品与发酵工业》2015,(12):208-211
为深入了解热风干燥冬瓜片吸附过程中的水分变化特性,提高冬瓜干制产品的贮藏稳定性,测定了冬瓜干制产品在25℃下的吸附等温线,并采用6种常见的数学模型对其进行非线性拟合,得到最优模型;采用差示扫描量热法测定了不同水分含量冬瓜干制产品的玻璃化转变温度T_g,探讨了冬瓜干制产品的适宜贮藏条件。研究结果表明,冬瓜的吸附等温线属于Ⅲ型等温线,描述干制冬瓜吸附特性的最优模型为GAB模型,热风干燥冬瓜片的T_g值随着含水率的降低而升高。当温度为25℃时,冬瓜的临界含水率为9.67%,临界水分活度为0.237 4。该研究结果为热风干燥冬瓜片的实际产业化生产控制提供理论依据,为适宜贮藏条件的确立提供参考。  相似文献   

10.
为了提高油菜籽储藏期间的稳定性,延长其保质期。采用静态称量法对油菜籽在20、30、40℃温度条件下的解吸特性进行研究,将实验数据用5种常见数学模型进行拟合并对最佳模型进行解析。采用净等量吸附热(q_(st))、扩张压力(Φ)、微分熵(ΔS)、净积分焓(q_(in))、净积分熵(ΔS_(in))以及焓熵互补等特征参数对其热力学性质进行描述。结果表明,油菜籽等温线属于Type Ⅱ类曲线,油菜籽的平衡含水率与水分活度呈正相关,一定水分活度下,平衡含水率与温度呈负相关;描述水分活度与平衡含水率关系最佳模型为GAB模型,不同温度条件下模型决定系数R~2的平均值为0.993 7,卡方x~2的范围为1.396 5×10~(-5)~0.778,残差平方和RSS最低值为4.189 6×10~(-6);较高Φ值能提高干燥速率,储藏过程中,较低Φ值能延长物料保质期;对ΔS_(in)与平衡含水率的关系分析得到最低ΔS_(in)值,在20、30、40℃条件下,籽粒内结合水和单分子层吸附水分子最稳定的平衡含水率分别为5.03%、4.92%以及4.88%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号