首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
运用Voronoi图理论及人工势场理论,研究了一种基于近似Voronoi图的移动机器人实时路径规划的方法,用来实现未知室内环境中移动机器人的自主导航。该方法朝向预先定义的目标点位置来探测室内环境,生成近似Voronoi图,同时利用人工势场法进行避障,生成一条能达到目标点的安全、光滑路径。仿真结果表明,该方法简单且易于实现,同时能够减少规划时间。  相似文献   

2.
Presented in this paper is a sweepline algorithm to compute the Voronoi diagram of a set of circles in a two-dimensional Euclidean space. The radii of the circles are non-negative and not necessarily equal. It is allowed that circles intersect each other, and a circle contains others.The proposed algorithm constructs the correct Voronoi diagram as a sweepline moves on the plane from top to bottom. While moving on the plane, the sweepline stops only at certain event points where the topology changes occur for the Voronoi diagram being constructed.The worst-case time complexity of the proposed algorithm is O((n+m)log n), where n is the number of input circles, and m is the number of intersection points among circles. As m can be O(n2), the presented algorithm is optimal with O(n2 log n) worst-case time complexity.  相似文献   

3.
We present a collection of algorithms, all running in timeO(n 2 logn (n) o((n)3)) for some fixed integers(where (n) is the inverse Ackermann's function), for constructing a skeleton representation of a suitably generalized Voronoi diagram for a ladder moving in a two-dimensional space bounded by polygonal barriers consisting ofn line segments. This diagram, which is a two-dimensional subcomplex of the dimensional configuration space of the ladder, is introduced and analyzed in a companion paper by the present authors. The construction of the diagram described in this paper yields a motion-planning algorithm for the ladder which runs within the same time bound given above.Work on this paper has been supported in part by Office of Naval Research Grant N00014-82-K-0381, and by grants from the Digital Equipment Corporation, the Sloan Foundation, the System Development Foundation, the IBM corporation, and by National Science Foundation CER Grant No. DCR-8320085. Work by the second author has also been supported in part by a grant from the US-Israeli Binational Science Foundation.  相似文献   

4.
This paper describes an efficient shape representation framework for planar shapes using Voronoi skeletons.This paper makes the following significant contributions. First a new algorithm for the construction of the Voronoi diagram of a polygon with holes is described. The main features of this algorithm are its robustness in handling the standard degenerate cases (colinearity of more than two points; co-circularity of more than three points), and its ease of implementation. It also features a robust numerical scheme to compute non-linear parabolic edges that avoids having to solve equations of degree greater than two. The algorithm has been fully implemented and tested in a variety of test inputs.Second, the Voronoi diagram of a polygon is used to derive accurate and robust skeletons for planar shapes. The shape representation scheme using Voronoi skeletons possesses the important properties of connectivity as well as Euclidean metrics. Redundant skeletal edges are deleted in a pruning step which guarantees that connectivity of the skeleton will be preserved. The resultant representation is stable with respect to being invariant to perturbations along the boundary of the shape. A number of examples of shapes with and without holes are presented to demonstrate the features of this approach.  相似文献   

5.
The visual system plays a predominant role in the human perception. Although all components of the eye are important to perceive visual information, the retina is a fundamental part of the visual system. In this work we study the spatial relations between neuronal mosaics in the retina. These relations have shown its importance to investigate possible constraints or connectivities between different spatially colocalized populations of neurons, and to explain how visual information spreads along the layers before being sent to the brain. We introduce the V-Proportion, a method based on the Voronoi diagram to study possible spatial interactions between two neuronal mosaics. Results in simulations as well as in real data demonstrate the effectiveness of this method to detect spatial relations between neurons in different layers.  相似文献   

6.
The complexity of motion planning algorithms highly depends on the complexity of the robot's free space, i.e., the set of all collision-free placements of the robot. Theoretically, the complexity of the free space can be very high, resulting in bad worst-case time bounds for motion planning algorithms. In practice, the complexity of the free space tends to be much smaller than the worst-case complexity. Motion planning algorithms with a running time that is determined by the complexity of the free space therefore become feasible in practical situations. We show that, under some realistic assumptions, the complexity of the free space of a robot with any fixed number of degrees of freedom moving around in ad-dimensional Euclidean workspace with fat obstacles is linear in the number of obstacles. The complexity results lead to highly efficient algorithms for motion planning amidst fat obstacles.Research is supported by the Dutch Organization for Scientific Research (NWO) and partially supported by the ESPRIT III BRA Project 6546 (PROMotion).  相似文献   

7.
We introduce a new method for computing the geodesic Voronoi diagram of point sites in a simple polygon and other restricted polygonal domains. Our method combines a sweep of the polygonal domain with the merging step of a usual divide-and-conquer algorithm. The time complexity is O((n+k) log(n+k)) where n is the number of vertices and k is the number of points, improving upon previously known bounds. Space is O(n+k) . Other polygonal domains where our method is applicable include (among others) a polygonal domain of parallel disjoint line segments and a polygonal domain of rectangles in the L 1 metric. Received February 15, 1996; revised November 2, 1996.  相似文献   

8.
In this paper, we prove polynomial running time bounds for an Ant Colony Optimization (ACO) algorithm for the single-destination shortest path problem on directed acyclic graphs. More specifically, we show that the expected number of iterations required for an ACO-based algorithm with n ants is for graphs with n nodes and m edges, where ρ is an evaporation rate. This result can be modified to show that an ACO-based algorithm for One-Max with multiple ants converges in expected iterations, where n is the number of variables. This result stands in sharp contrast with that of Neumann and Witt, where a single-ant algorithm is shown to require an exponential running time if ρ=O(n−1−ε) for any ε>0.  相似文献   

9.

集装箱码头堆场出口箱箱位分配和场桥调度对码头运营效率有重要影响. 为了合理分配箱位和调度场桥, 采用分区域平衡策划方法, 在给定批量任务下, 考虑场桥实际作业中的安全距离, 以均衡各场桥作业任务量和减少场 桥的非装卸时间为目标, 建立混合整数规划模型, 并设计遗传算法求解, 通过不同批量任务的实验分析验证所提出方法的有效性. 研究表明, 分区域平衡策划方法可以更好地解决箱位分配和箱区多场桥联合作业的优化问题.

  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号