共查询到14条相似文献,搜索用时 5 毫秒
1.
利用单幅CT图像进行肺部节结的识别存在较大的局限性,故把多幅相邻图像组成的短图像序列引入自动识别的过程,并根据节结的球形结构,把节结感兴趣区域(ROI)对应的原始图像看做是二维函数的三维表面,提取不同于传统图像区域特征的刻画三维表面形状且反映节结在短图像序列中变化情况的新型特征。最后用支持向量机(SVM)进行分类实验,验证了所提取特征的有效性。 相似文献
2.
In this paper, a hierarchical multi-classification approach using support vector machines (SVM) has been proposed for road intersection detection and classification. Our method has two main steps. The first involves the road detection. For this purpose, an edge-based approach has been developed using the bird’s eye view image which is mapped from the perspective view of the road scene. Then, the concept of vertical spoke has been introduced for road boundary form extraction. The second step deals with the problem of road intersection detection and classification. It consists on building a hierarchical SVM classifier of the extracted road forms using the unbalanced decision tree architecture. Many measures are incorporated for good evaluation of the proposed solution. The obtained results are compared to those of Choi et al. (2007). 相似文献
3.
4.
目的 地表覆盖监测是生态环境变化研究、土地资源管理和可持续发展的重要基础,在全球资源监测、全球变化检测中发挥着重要作用。提高中等分辨率遥感影像地表覆盖分类的精度具有非常重要的意义。方法 近年来,深度卷积神经网络在图像分类、目标检测和图像语义分割等领域取得了一系列突破性的进展,相比于传统的机器学习方法具有更强的特征学习和特征表达能力。基于其优越的特性,本文进行了深度卷积神经网络对中分辨率遥感影像进行特征提取和分类的探索性研究。以GF-1的16 m空间分辨率多光谱影像为实验数据,利用预训练好的AlexNet深度卷积神经网络模型进行特征提取,以SVM为分类器进行分类。分析了AlexNet不同层的特征以及用于提取特征的邻域窗口尺寸对分类结果的影响,并与传统的单纯基于光谱特征和基于光谱+纹理特征的分类结果进行对比分析。结果 结果表明在用AlexNet模型提取特征进行地表覆盖分类时,Fc6全连接层是最有效的特征提取层,最佳的特征提取窗口尺寸为9×9像素,同时利用深度特征得到的总体分类精度要高于其他两种方法。结论 深度卷积神经网络可以提取更精细更准确的地表覆盖特征,得到更高的地表覆盖分类精度,为地表覆盖分类提供了参考价值。 相似文献
5.
6.
针对现有利用快速鲁棒特征(SURF)进行图像分类的方法中存在的效率低、正确率低的问题,提出一种利用图像SURF集合的统计特征进行图像分类的方法.该方法将SURF的各个维度及尺度信息视为各自独立的随机变量,并利用拉普拉斯响应区分不同数据.首先,获取图像的SURF向量集合;然后,分维度计算SURF向量集合的一阶中心绝对矩、带权一阶中心绝对矩等统计特征,并构建特征向量;最后,结合支持向量机(SVM)进行图像分类.在Corel 1K图像库上的实验结果表明,该方法查准率较SURF直方图方法和三通道Gabor纹理特征方法分别提高17.6%和5.4%.通过与HSV直方图特征进行高级特征融合,可获得良好的分类性能.与SURF直方图结合HSV直方图方法、三通道Gabor纹理特征结合HSV直方图方法、基于视觉词袋(BoVW)模型的多示例学习方法相比,查准率分别提高了5.2%,6.8%,3.2%. 相似文献
7.
Bo Liu Author Vitae Author Vitae Jianhua Huang Author Vitae Author Vitae Xianglong Tang Author Vitae Author Vitae 《Pattern recognition》2010,43(1):280-298
Region of interest (ROI) is a region used to extract features. In breast ultrasound (BUS) image, the ROI is a breast tumor region. Because of poor image quality (low SNR (signal/noise ratio), low contrast, blurry boundaries, etc.), it is difficult to segment the BUS image accurately and produce a ROI which precisely covers the tumor region. Due to the requirement of accurate ROI for feature extraction, fully automatic classification of BUS images becomes a difficult task. In this paper, a novel fully automatic classification method for BUS images is proposed which can be divided into two steps: “ROI generation step” and “ROI classification step”. The ROI generation step focuses on finding a credible ROI instead of finding the precise tumor location. The ROI classification step employs a novel feature extraction and classification strategy. First, some points in the ROI are selected as the “classification checkpoints” which are evenly distributed in the ROI, and the local texture features around each classification checkpoint are extracted. For each ROI, all the classification checkpoints are classified. Finally, the class of the BUS image is determined by analyzing every classification checkpoint in the corresponding ROI. Both steps were implemented by utilizing a supervised texture classification approach. The experiments demonstrate that the proposed method is very robust to the segmentation of BUS images, and very effective and useful for classifying breast tumors. 相似文献
8.
根据视频语义分析和视频摘要等应用对于视频数据结构化的需求,提出了一种针对足球视频的镜头分类方法.通过logo模板匹配检测并定位出视频中的慢镜头,对其余的正常比赛部分做镜头边界检测完成视频切分.基于分块的思想,对正常比赛镜头帧计算其各块的场地像素比率值作为特征,利用SVM分类器将正常比赛镜头分为远镜头、中镜头、球员特写或场外镜头3类.至此,整个视频流可以表示为结构化的四类镜头类型标示序列.实验结果表明,该方法在视频切分和镜头类型识别的准确性方面具有良好的效果. 相似文献
9.
10.
Computer‐aided classification of breast masses in mammogram images based on spherical wavelet transform and support vector machines 下载免费PDF全文
Breast cancer can be effectively detected and diagnosed using the technology of digital mammography. However, although this technology has been rapidly developing recently, suspicious regions cannot be detected in some cases by radiologists, because of the noise or inappropriate mammogram contrast. This study presents a classification of segmented region of interests (ROIs) as either benign or malignant to serve as a second eye of the radiologists. Our study consists of three steps. In the first step, spherical wavelet transform (SWT) is applied to the original ROIs. In the second step, shape, boundary and grey level based features of wavelet (detail) and scaling (approximation) coefficients are extracted. Finally, in the third step, malignant/benign classification of the masses is implemented by giving the feature matrices to a support vector machine system. The proposed system achieves 91.4% and 90.1% classification accuracy using the dataset acquired from the hospital of Istanbul University in Turkey and the free Mammographic Image Analysis Society, respectively. Furthermore, discrete wavelet transform, which produces 83.3% classification accuracy, is applied to the coefficients to make a comparison with the SWT method. 相似文献
11.
A comparative study on classification of features by SVM and PSVM extracted using Morlet wavelet for fault diagnosis of spur bevel gear box 总被引:2,自引:0,他引:2
N. Saravanan V.N.S. Kumar Siddabattuni K.I. Ramachandran 《Expert systems with applications》2008,35(3):1351-1366
The condition of an inaccessible gear in an operating machine can be monitored using the vibration signal of the machine measured at some convenient location and further processed to unravel the significance of these signals. This paper deals with the effectiveness of wavelet-based features for fault diagnosis using support vector machines (SVM) and proximal support vector machines (PSVM). The statistical feature vectors from Morlet wavelet coefficients are classified using J48 algorithm and the predominant features were fed as input for training and testing SVM and PSVM and their relative efficiency in classifying the faults in the bevel gear box was compared. 相似文献
12.
事件检测支持向量机模型与神经网络模型比较 总被引:1,自引:0,他引:1
覃频频 《计算机工程与应用》2006,42(34):214-217,232
针对交通领域中的事件检测(无事件模式和有事件模式)模式识别问题,描述了支持向量机(SVM)的基本方法,建立了基于线性(linearfunction)、多项式(polynomialfunction)和径向基(radialbasisfunction)3种核函数的事件检测SVM模型,并与PNN、MLF模型进行了理论比较。采用I-880线圈数据集和事件数据集建立并验证SVM、PNN和MLF模型,结果发现:无论对于向北、向南或混合方向的事件检测,SVM模型的检测率(DR)、误报率(FAR)和平均检测时间(MTTD)指标均比MLF模型好;PNN模型的DR比SVM(P)模型的高,但FAR和MTTD指标不比SVM(P)模型好;在3个SVM模型中,SVM(P)检测效果最好,SVM(L)最差。SVM算法与神经网络算法相比具有避免局部最小,实现全局最优化,更好的泛化效果的优点,是高速公路事件检测的一种很有潜力的算法。 相似文献
13.