首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
本文设计了一种低电压电容式RFMEMS开关,开关采用了两端固支梁结构,在梁与CPW共面波导地线的四个固定支撑位置使用了折叠结构,该结构可以减低下拉电压;通过在MEMS开关梁上开孔(直径9μm圆孔)来减小残余应力和杨氏模量和选择合适的开关梁厚度,显著降低了MEMS开关梁的弹性系数和下拉电压。以上措施显著降低了电容式RFMEMS开关的下拉电压,在ANSYS仿真下拉电压约为6V,驱动电压约为8.4V,该MEMS开关依旧保持了较好的S参数,开关插入损耗大于-0.35dB(8-40GHz),回波损耗小于-22dB(8-40GHz),隔离度(down态S21)大于25dB(8-40GHz)。  相似文献   

2.
本文提出了一种新方法来解决传统静电驱动的电容式微机电(MEMS)开关的驱动电压过高的问题,通过对介质层 预先注入和存储适量的电荷,在该介质层中形成稳定的内建电势,这将优化MEMS固支梁的下拉操作,从而有效降低MEMS开关的驱动电压。此外,在开关制备完成后,仍可通过调控介质层中注入电荷的数目来调节内建电势大小,从而在不改变MEMS开关结构参数的条件下实现MEMS开关驱动电压的可重构功能,建立了该新型MEMS开关的解析模型,对该新型模型进行分析,并验证了模型的正确性。  相似文献   

3.
贺训军  吴群  金博识  宋明歆  殷景华   《电子器件》2007,30(5):1835-1838
为降低Ka波段分布式MEMS移相器容性开关的驱动电压,提出不同形状新型低弹性系数铰链梁结构MEMS电容开关的机电设计概念.采用Intelli SuiteTM和ADS软件分析了三种梁结构MEMS电容开关的位移分布、驱动电压、机械振动模式和射频性能等参数,结果表明:所设计新型beam2结构MEMS电容开关具有优越的机电特性和射频特性,即开关的驱动电压为3V,机械振动模式固有频率都大于31kHz,在35GHz处插入损耗和回波损耗分别为0.082dB和18.6dB,而相移量可达到105.9o.  相似文献   

4.
低驱动电压电容式RF MEMS开关结构设计优化   总被引:3,自引:3,他引:0  
RFMEMS开关将成为微波、高频信号控制的关键器件。针对其驱动电压过高,不能满足现代通信系统低电压的要求,推导了电容式RFMEMS开关驱动电压的理论公式;基于降低开关柔顺结构的弹性系数、驱动电极上极板与可变电容上极板分离的思路,优化设计了三种具有不同的连接梁和支撑梁结构形式的开关微桥柔顺结构。第一种结构为驱动电极板和电容上极板之间以双直梁连接;第二种结构以一组弹性折叠梁代替结构一中的双直梁;第三种结构是在结构二的基础上,改变了起支撑作用的弹性折叠梁的方向。使用MEMS CAD软件CoventorWare对开关结构进行了机电耦合仿真,仿真结果表明开关的驱动电压小于3V。  相似文献   

5.
吸合电压是MEMS静电执行器的重要参数,针对RF MEMS开关,详细分析了开关在不同执行方式下的吸合电压.对于执行电压是脉冲方式而言,开关梁受迫振动,不同于准静态方式,此时使开关发生吸合的执行电压为动态吸合电压,计算表明比准静态吸合电压小8%.通过简化的弹性系数和精确的电容计算公式,详细分析了基于CPW的双端固支梁开关的准静态和动态吸合电压.分析了环境阻尼对动态吸合电压的影响,阻尼使得开关的两种吸合电压差别变小.最后分析了射频输入功率对开关吸合电压的影响,射频输入功率会降低吸合电压,如果输入功率足够大,吸合电压将会降为零,此时MEMS开关会发生自执行失效.  相似文献   

6.
RF MEMS开关吸合电压的分析   总被引:1,自引:1,他引:0  
吸合电压是MEMS静电执行器的重要参数,针对RF MEMS开关,详细分析了开关在不同执行方式下的吸合电压.对于执行电压是脉冲方式而言,开关梁受迫振动,不同于准静态方式,此时使开关发生吸合的执行电压为动态吸合电压,计算表明比准静态吸合电压小8%.通过简化的弹性系数和精确的电容计算公式,详细分析了基于CPW的双端固支梁开关的准静态和动态吸合电压.分析了环境阻尼对动态吸合电压的影响,阻尼使得开关的两种吸合电压差别变小.最后分析了射频输入功率对开关吸合电压的影响,射频输入功率会降低吸合电压,如果输入功率足够大,吸合电压将会降为零,此时MEMS开关会发生自执行失效.  相似文献   

7.
针对传统RF MEMS单刀双掷(SPDT)开关应用存在频段低、插入损耗高、隔离度低等问题,设计了一种混合型SPDT开关,通过在一条通路上设置接触式开关和电容式开关,实现了在L~E频段下的低插入损耗和高隔离度。通过设计蛇形上电极结构,降低了上电极的弹性系数,进而降低开关上电极下拉所需的驱动电压。采用HFSS仿真软件对混合型SPDT开关的射频性能参数进行了优化,并利用COMSOL对开关的蛇形上电极进行应力-位移分析。仿真结果表明,在DC~90 GHz的频段下,SPDT开关的插入损耗小于1.5 dB@90 GHz,隔离度大于52 dB@67 GHz、29 dB@90 GHz。此开关适用于无线通信系统、雷达系统和仪器测量系统等对工作频段要求高的领域内。  相似文献   

8.
BST-MEMS移相器开关   总被引:1,自引:0,他引:1  
为了提高MEMS电容开关性能,介绍了移相器的一种新型结构——分布式电容周期性加载结构。分析发现移相器的相移度和单元可变电容的变化率有关。目前MEMS可变电容单元采用的介质基本上是氮化硅。BST薄膜作为一种性质优良的介电材料,其介电常数远大于氮化硅。从MEMS移相器开关性能的几个关键指标出发,探讨在MEMS移相器开关中,用BST薄膜代替氮化硅介质的可能性。  相似文献   

9.
针对传统多位分布式MEMS传输线(DMTL)移相器需要多个偏置电压控制的问题,提出了一种单电压控制多位DMTL移相器的设计方案。这种移相器的每一位具有不同的弹性系数,因此它们的下拉电压各不相同。给出了这种移相器的相关理论、设计实例及仿真结果。通过仿真结果可知,单偏置电压3位DMTL移相器低位到高位的下拉电压分别为19.73,40.49和74.89 V,低位发生下拉时高位相移偏移小于0.062%(10 GHz,2.925×10-4 rad)。单偏置电压4位DMTL移相器低位到高位的下拉电压分别为19.73,32.55,48.41和74.89 V,低位发生下拉时高位相移偏移小于0.094%(10 GHz,4.425×10-4 rad)。  相似文献   

10.
基于谐振原理的RF MEMS滤波器的研制   总被引:2,自引:0,他引:2  
采用与IC工艺兼容的硅表面MEMS加工技术,以碳化硅材料作为结构材料,研制出一种新型的基于谐振原理工作的RF MEMS滤波器。详细介绍了器件的工作原理、制备方法、测试技术和结果,并对测试结果做出分析。该RF MEMS滤波器由弹性耦合梁连接两个结构尺寸和谐振频率完全相同的MEMS双端固支梁谐振器构成,MEMS谐振器的结构决定了滤波器的中心频率,弹性耦合梁的刚度决定了滤波器的带宽。在大气环境下测试器件的频响特性,得到中心工作频率为41.5MHz,带宽为3.5MHz,品质因数Q为11.8。  相似文献   

11.
提出了一种新型电磁驱动推拉式射频MEMS开关。针对传统静电驱动单臂梁开关所需驱动电压大、恢复力不足等问题,设计了一种推拉式开关结构,降低了驱动电压(电流),提高了开关的隔离度,同时实现了单刀双掷的功能。单晶Si梁由于自身无应力,解决了悬臂梁残余应力引起的梁变形问题。通过理论计算和有限元分析,优化了开关设计尺寸,在外围永磁铁磁感应梯度dB/dz=100T/m,在线圈通入100mA电流的驱动下,单晶Si扭转梁末端可以获得约10μm的弯曲量,满足开关驱动要求。给出了开关的详细微细加工流程,对开关的传输参数进行了测试,在10GHz时隔离度为-40dB.  相似文献   

12.
研究了一种新型的、应用于X波段的高隔离度RF MEMS电容式并联开关结构。相比于普通的并联结构,该开关通过共面波导(CPW)传输线与地平面之间的衬底刻槽结构将隔离度提高了7dB,关态时在13.5GHz谐振频率处的隔离度为-54.6dB,执行电压为26V。弹簧梁结构开关的执行电压下降为14V,在11GHz处其隔离度为-42.8dB。通过两个并联开关级联与开关间的高阻传输线构成的π型调谐开关电路,在11.5GHz处的隔离度为-81.6dB。  相似文献   

13.
The demonstration of a wideband DC-contact MEMS series switch on an alumina substrate is reported. The switch is based on a cantilever beam design. The tip of the cantilever beam was formed into a fork tip design, and its RF performance was measured and compared with a regular rectangular tip. This design reduced up-state capacitance from 10 to 3.8 fF. The beam with fork tip exhibited high isolation: -39, -32 and -17.3 dB at 5, 10 and 77 GHz, respectively. The measured insertion loss was -0.142, -0.172 and 0.36 dB at 5, 10 and 77 GHz, respectively. The switch had low actuation voltage (⩽39 V) and a relatively fast switching time of 45 s. To our knowledge, this is the first demonstration of a high-performance cantilever beam design DC-contact MEMS series switch at W-band frequencies.  相似文献   

14.
介绍了一种新型的隔离放大电路,采用微机械开关实现“飞电容”结构。这种隔离放大电路具有许多优点:电路结构简单、尺寸小、成本低、隔离电压高、电磁兼容性能优良,很容易组成多通道隔离电路等;在30V驱动电压下测试,微机械开关的延时小于50μs,隔离电压大于110V。对设计、制造出的微机械开关隔离放大器进行了测试,证明该电路的精度优于2%。  相似文献   

15.
朱越  王德波 《微电子学》2024,54(1):134-140
为了提高电容式MEMS微波功率检测芯片的性能,设计了一种GaAs基高性能MEMS微波功率传感芯片。通过建立双导固支梁电容模型,分析了传感芯片的传输特性、过载功率与灵敏度特性。在双导固支梁电容模型中提出了平行极板的两个等效条件;同时提出了一种新的梁宽等效方式,解决了双梁结构等效梁宽的失配问题,减小了模型的相对误差。双导固支梁电容模型很好地解释了导向梁的厚长比与初始高度对传感器过载功率和灵敏度的影响。测试结果表明,双导固支梁MEMS微波功率传感芯片在200 mW输入功率内的灵敏度为14.3 fF/W,而灵敏度的理论值为13.5 fF/W,两者的相对误差仅5.6%。因此,该理论模型对固支梁MEMS微波功率传感芯片的设计具有一定的借鉴意义。  相似文献   

16.
The integration of microelectromechanical systems (MEMS) switch and control integrated circuit (IC) in a single package was developed for use in next-generation portable wireless systems. This packaged radio-frequency (RF) MEMS switch exhibits an insertion loss under -0.4 dB, and isolation greater than -45 dB. This MEMS switch technology has significantly better RF characteristics than conventional PIN diodes or field effect transistor (FET) switches and consumes less power. The RF MEMS switch chip has been integrated with a high voltage charge pump plus control logic chips into a single package to accommodate the low voltage requirements in portable wireless applications. This paper discusses the package assembly process and critical parameters for integration of MEMS devices and bi-complementary metal oxide semiconductor (CMOS) control integrated circuit (IC) into a single package.  相似文献   

17.
提出了一种串联MEMS开关的电磁耦合模型 ,并且应用该模型 ,对采用表面硅工艺和体硅工艺制作的MEMS开关 ,采用全波分析方法 ,进行了瞬态电磁场分析。由于开关尺寸为微米量级 ,而驱动电压高达 4 0~ 6 0V ,这样的瞬态高压有可能对开关上的信号产生影响。理论仿真结果显示 ,开关驱动路对信号路有很强的耦合场存在。实验结果同样显示 ,耦合到信号路的信号可以输入信号产生最大值为 6 0 %的失真  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号