首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 15 毫秒
1.
Vegetation water content is an important parameter for retrieval of soil moisture from microwave data and for other remote sensing applications. Because liquid water absorbs in the shortwave infrared, the normalized difference infrared index (NDII), calculated from Landsat 5 Thematic Mapper band 4 (0.76-0.90 μm wavelength) and band 5 (1.55-1.65 μm wavelength), can be used to determine canopy equivalent water thickness (EWT), which is defined as the water volume per leaf area times the leaf area index (LAI). Alternatively, average canopy EWT can be determined using a landcover classification, because different vegetation types have different average LAI at the peak of the growing season. The primary contribution of this study for the Soil Moisture Experiment 2004 was to sample vegetation for the Arizona and Sonora study areas. Vegetation was sampled to achieve a range of canopy EWT; LAI was measured using a plant canopy analyzer and digital hemispherical (fisheye) photographs. NDII was linearly related to measured canopy EWT with an R2 of 0.601. Landcover of the Arizona, USA, and Sonora, Mexico, study areas were classified with an overall accuracy of 70% using a rule-based decision tree using three dates of Landsat 5 Thematic Mapper imagery and digital elevation data. There was a large range of NDII per landcover class at the peak of the growing season, indicating that canopy EWT should be estimated directly using NDII or other shortwave-infrared vegetation indices. However, landcover classifications will still be necessary to obtain total vegetation water content from canopy EWT and other data, because considerable liquid water is contained in the non-foliar components of vegetation.  相似文献   

2.
Retrieval of soil moisture content using the vertical and horizontal polarizations of multiple frequency bands on microwave sensors can provide an estimate of vegetation water content (VWC). Another approach is to use foliar-water indices based on the absorption at shortwave-infrared wavelengths by liquid water in the leaves to determine canopy water content, which is then related to VWC. An example of these indices is the normalized difference infrared index (NDII), which was found to be linearly related to canopy water content using various datasets, including data from the Soil Moisture Experiments 2002 and 2005 in central Iowa. Here we compared independent estimates of VWC from WindSat to Moderate resolution Imaging Spectroradiometer (MODIS) NDII over central Iowa from 2003 to 2005. Results showed that there was a linear relationship between the MODIS and WindSat estimates of VWC, although WindSat-retrieved VWC was greater than MODIS-retrieved VWC. WindSat and MODIS have different satellite overpass times and in most climates we expect VWC to vary over a day due to transpiration and plant water stress. However, a sensitivity analysis indicated that the diurnal variation of VWC should not have a significant effect on retrievals of VWC by either method. The results of this study indicated that soil moisture retrievals from microwave sensors may be improved using VWC from optical sensors determined by foliar-water indices and classifications of land cover type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号