首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two glycosaminoglycan-protein linkage tetrasaccharide-serine compounds, GlcAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser and GlcAbeta1-3Gal(4-O-sulfate)beta1-3Galbeta1-4Xylbeta1-O -Ser, were tested as hexosamine acceptors, using UDP-[3H]GlcNAc and UDP-[3H]GalNAc as sugar donors, and solubilized mouse mastocytoma microsomes as enzyme source. The nonsulfated Ser-tetrasaccharide was found to function as an acceptor for a GalNAc residue, whereas the Ser-tetrasaccharide containing a sulfated galactose unit was inactive. Characterization of the radio-labelled product by digestion with alpha-N-acetylgalactosaminidase and beta-N-acetylhexosaminidase revealed that the [3H]GalNAc unit was alpha-linked, as in the product previously synthesized using serum enzymes, and not beta-linked as found in the chondroitin sulfate polymer. Heparan sulfate/heparin biosynthesis could not be primed by either of the two linkage Ser-tetrasaccharides, since no transfer of [3H]GlcNAc from UDP-[3H]GlcNAc could be detected. By contrast, transfer of a [3H]GlcNAc unit to a [GlcAbeta1-4GlcNAcalpha1-4]2-GlcAbeta1-4-aMan hexasaccharide acceptor used to assay the GlcNAc transferase involved in chain elongation, was readily detected. These results are in agreement with the recent proposal that two different N-acetylglucosaminyl transferases catalyse the biosynthesis of heparan sulfate. Although the mastocytoma system contains both the heparan sulfate/heparin and chondroitin sulfate biosynthetic enzymes the Ser-tetrasaccharides do not seem to fulfil the requirements to serve as acceptors for the first HexNAc transfer reactions involved in the formation of these polysaccharides.  相似文献   

2.
3.
4.
We prepared a series of oligosaccharides from king crab cartilage chondroitin sulfate K after exhaustive digestion with testicular hyaluronidase, and determined the structures of four tetrasaccharides and a pentasaccharide by fast atom bombardment mass spectrometry, high performance liquid chromatography analysis of chondroitinase AC-II digests, and 500-MHz 1H NMR spectroscopy. The tetrasaccharides shared the common core structure GlcAbeta1-3GalNAcbeta1-4GlcAbeta1-3GalNAc with various sulfation profiles. One structure was GlcAbeta1-3GalNAc(4S)beta1-4GlcAbeta1-3GalNAc(4S), whereas three of them have the following hitherto unreported structures including a novel glucuronate 3-O-sulfate: GlcA(3S)beta1-3GalNAc(4S)beta1-4GlcAbeta1-3GalNAc(4S), GlcAbeta1-3GalNAc(4S)beta1-4GlcA(3S)beta1-3GalNAc(4S), and GlcA(3S)beta1-3GalNAc(4S)beta1-4GlcA(3S)beta1-3GalNAc(4S), where 3S or 4S represents 3-O- or 4-O-sulfate, respectively. The structure of the pentasaccharide was determined as GlcA(3S)beta1-3GalNAc(4S)beta1-4GlcA(3S)beta1- 3GalNAc(4S)beta1-4GlcA. Chondroitinase ABC digestion of the tetrasaccharides with GlcA(3S) at the internal position destroyed the disaccharide unit containing GlcA(3S) derived from the reducing side and resulted in only the disaccharide unit from the non-reducing side. In contrast, these tetrasaccharides remained totally resistant to chondroitinase AC-II. The results indicated that it is necessary to reevaluate the disaccharide composition of chondroitin sulfate poly- or oligosaccharides purified from various biological sources, since they were usually determined after chondroitinase ABC digestion. It is probable that the structures containing GlcA(3S) would not have been detected.  相似文献   

5.
Stable BHK-21 cell lines were constructed expressing the Golgi membrane-bound form and two secretory forms of the human alpha1, 3/4-fucosyltransferase (amino acids 35-361 and 46-361). It was found that 40% of the enzyme activity synthesized by cells transfected with the Golgi form of the fucosyltransferase was constitutively secreted into the medium. The corresponding enzyme detected by Western blot had an apparent molecular mass similar to those of the truncated secretory forms. The secretory variant (amino acids 46-361) was purified by a single affinity-chromatography step on GDP-Fractogel resin with a 20% final recovery. The purified enzyme had a unique NH2 terminus and contained N-linked endo H sensitive carbohydrate chains at its two glycosylation sites. The fucosyltransferase transferred fucose to the O-4 position of GlcNAc in small oligosaccharides, glycolipids, glycopeptides, and glycoproteins containing the type I Galbeta1-3GlcNAc motif. The acceptor oligosaccharide in bovine asialofetuin was identified as the Man-3 branched triantennary isomer with one Galbeta1-3GlcNAc. The type II motif Galbeta1-4GlcNAc in bi-, tri-, or tetraantennary neutral or alpha2-3/alpha2-6 sialylated oligosaccharides with or without N-acetyllactosamine repeats and in native glycoproteins were not modified. The soluble forms of fucosyltransferase III secreted by stably transfected cells may be used for in vitro synthesis of the Lewisa determinant on carbohydrates and glycoproteins, whereas Lewisx and sialyl-Lewisx structures cannot be synthesized.  相似文献   

6.
Two new oligosaccharides were prepared from heparin by its partial depolymerization using heparin lyase I (EC 4.2.2.7) in an attempt to prepare oligosaccharides having intact antithrombin III binding sites. The oligosaccharides were purified by chromatography on the basis of both size and charge and demonstrated a high level of purity by capillary electrophoresis. One- and two-dimensional 1H NMR spectroscopy at 500 MHz revealed the structure of each oligosaccharide. The octasaccharide and decasaccharide are DeltaUAp2S(1-->4)-alpha-DGlcNpS6S(1-->4)-alpha-L-IdoAp (1-->4)-alpha-D -GlcNpAc6S(1-->4)-betaD-GlcAp(1-->4)-alpha-D-GlcNpS 3S6S(1-->4)-alpha- L-IdoAp2S(1-->4)alpha-D-GlcNpS6S (where DeltaUAp is 4-deoxy-alpha-L-threo-hex-enopyranosyluronic acid, GlcNp is 2-amino-2-deoxy-glucopyranose, GlcAp is glucopyranosyluronic acid, S is sulfate and Ac is acetate) and DeltaUAp2S(1-->4)-alpha-D-GlcNpS6S(1-->4)-alpha-L-IdoAp++ +(1-->4)-alpha- D-GlcNpAc6S (1-->4)-beta-D-GlcAp(1-->4)-alpha-D-GlcNpS3S6S(1-->4)-alpha- L-IdoAp2S (1-->4)-alpha-D-GlcNpS6S(1-->4)-alpha-L-IdoAp2S(1-->4)-alpha -D-GlcNpS 6S, respectively. A hexasaccharide containing a similar structural motif to that found in the antithrombin III binding site and having greatly reduced anticoagulant activity was also isolated. The structure of the hexasaccharide is DeltaUAp2S(1-->4)-alpha-D-GlcNpAc6S(1-->4)-beta-D-GlcAp++ +(1-->4)-alpha- D-GlcNpS3S6S(1-->4)-alpha-L-IdoAp(1-->4)-alpha-D-GlcNpS6S . The octasaccharide and decasaccharide correspond to the predominant structural motif found in porcine intestinal mucosal heparin. Sufficient quantities of the decasaccharide were obtained to examine its interaction with antithrombin III using microtitration calorimetry. This decasaccharide bound to antithrombin III with similar avidity as heparin and showed comparable anticoagulant activity, as determined using an antithrombin III dependent anti-factor Xa assay. Interestingly, while both decasaccharide and heparin bound to antithrombin with nanomolar affinity, very little heat of binding was observed.  相似文献   

7.
Five octasaccharides derived from the protein carbohydrate linkage region of chondroitin sulphate (CS) have been isolated from the large aggregating proteoglycan (aggrecan) extracted from the bovine articular cartilage of 6-year-old to 8-year-old animals. Following the purification of aggrecan the attached CS chains were digested with CS ABC endolyase and subsequently released from the protein core by beta-elimination. The individual oligosaccharides were purified by strong anion-exchange chromatography and their structures determined by very high-field one-dimensional and two-dimensional 1H-NMR spectroscopy. They were found to be octasaccharides, comprised of tetrasaccharide repeat-region extensions to the core tetrasaccharide linkage region structure. They have the following structures: deltaUA(beta1-3)GalNAc(beta1-4)GlcA(beta1-3)GalNAc(beta1-4)+ ++GlcA(beta1-3)Gal(beta1-3)Gal(beta1-4)Xyl-ol, deltaUA(beta1-3)GalNAc(beta1-4)GlcA(beta1-3)GalNAc6S(b eta1-4)GlcA(beta1-3)Gal(beta1-3)Gal(beta1-4)Xyl-ol, deltaUA(beta1-3)GalNAc6S(beta1-4)GlcA(beta1-3)GalNAc(b eta1-4)GlcA(beta1-3)Gal(beta1-3)Gal(beta1-4)Xyl-ol, deltaUA(beta1-3)GalNAc6S(beta1-4)GlcA(beta1-3)GalNA c6S(beta1-4)GlcA(beta1-3)Gal(beta1-3)Gal(beta1-4)Xyl-ol and deltaUA(beta1-3)GalNAc4S(beta1-4)GlcA(beta1-3)GalNA c6S(beta1-4)GlcA(beta1-3)Gal(beta1-3)Gal(beta1-4)Xyl-ol. They differ only in the nature of the sulphation of the GalNAc residues of the tetrasaccharide-repeat-region extension, which forms the first two disaccharides of the repeat region. No sulphation of any of the uronic acid residues has been identified and in one oligosaccharide neither of the GalNAc residues were sulphated. The majority of the linkage regions contained GalNAc residues which were fully 6-sulphated. However, in a significant amount, only one of the residues was 6-sulphated while the other was either unsulphated or 4-sulphated. There was no evidence either for sulphation of the linkage region galactose residues or for phosphorylation of the xylose residue, through which the chain is attached to the core protein.  相似文献   

8.
The selectins interact in important normal and pathological situations with certain sialylated, fucosylated glycoconjugate ligands containing sialyl Lewisx(Neu5Acalpha2-3Galbeta1-4(Fucalpha1-3)GlcN Ac). Much effort has gone into the synthesis of sialylated and sulfated Lewisxanalogs as competitive ligands for the selectins. Since the natural selectin ligands GlyCAM-1 and PSGL-1 carry sialyl Lewisxas part of a branched Core 2 O-linked structure, we recently synthesized Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-6(SE-3Galbeta1++ +-3)GalNAc1alphaOMe and found it to be a moderately superior ligand for L and P-selectin (Koenig et al. , Glycobiology 7, 79-93, 1997). Other studies have shown that sulfate esters can replace sialic acid in some selectin ligands (Yeun et al. , Biochemistry, 31, 9126-9131, 1992; Imai et al. , Nature, 361, 555, 1993). Based upon these observations, we hypothesized that Neu5Acalpha2-3Galbeta1-3GalNAc might have the capability of interacting with L- and P-selectin. To examine this hypothesis, we synthesized Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-6(Neu5Acalpha2++ +-3Galbeta1-3)-GalNAc alpha1-OB, which was found to be 2- to 3-fold better than sialyl Lexfor P and L selectin, respectively. We also report the synthesis of an unusual structure GalNAcbeta1-4(Fucalpha1- 3)GlcNAcbeta1-OMe (GalNAc-Lewisx-O-methyl glycoside), which also proved to be a better inhibitor of L- and P-selectin than sialyl Lewisx-OMe. Combining this with our knowledge of Core 2 branched structures, we have synthesized a molecule that is 5- to 6-fold better at inhibiting L- and P-selectin than sialyl Lewisx-OMe, By contrast to unbranched structures, substitution of a sulfate ester group for a sialic acid residue in such a molecule resulted in a considerable loss of inhibition ability. Thus, the combination of a sialic acid residue on the primary (beta1-3) arm, and a modified Lexunit on the branched (beta1-6) arm on an O-linked Core 2 structure generated a monovalent synthetic oliogosaccharide inhibitor superior to SLexfor both L- and P-selectin.  相似文献   

9.
Fibroblast growth factors are important heparin binding, mitogenic proteins. The binding site in heparin and heparan sulfate for fibroblast growth factor-2 (basic fibroblast growth factor) has been described as rich in glucosamine-2-sulfate 1-->4 linked to iduronic acid-2-sulfate. The glucosamine residue in the heparin binding site is also 6-sulfated. A new glycosaminoglycan, acharan sulfate, has been chemically modified to prepare a polysaccharide, N-sulfoacharan sulfate, consisting of glucosamine-2-sulfate 1-->4 linked to iduronic acid-2-sulfate. Acharan sulfate binds very weakly to fibroblast growth factor-2 while N-sulfoacharan sulfate binds with nearly the same affinity as heparin. Mitogenicity studies were performed using heparan sulfate-free cells stably transfected with fibroblast growth factor receptor-1. Acharan sulfate inhibits heparin's enhancement of fibroblast growth factor-2 mitogenic activity, without affecting cell viability, while N-sulfoacharan sulfate shows heparin-like activity but at a greatly reduced level. These results suggest additional mechanisms not requiring high affinity glycosaminoglycan binding to fibroblast growth factor-2 may be important in its mitogenic activity.  相似文献   

10.
Heparin was carboxyl-reduced with sodium boro[3H]hydride and converted to a mixture of oligosaccharides by treatment with nitrous acid at pH 2. The oligosaccharide mixture was aldehyde-reduced with sodium boro[3H]hydride and the mixture of products, labeled both in the hexoses formed in the carboxyl-reduction step and in the reducing sugars formed in the nitrous acid reaction, was separated and analyzed. The major product, L-idosyl 2-sulfate leads to anhydro-D-mannitol 6-sulfate (I), contained 60% of hexoses derived from the hexuronic acid residues in the original heparin. A second product, which contained 15% of the hexoses derived from the hexuronic acid residues in the original heparin, was identified as a tetrasaccharide composed of two L-idosyl 2-sulfate residues, one anhydro-D-mannitol 6-sulfate residue (the reducing end),and a hydroxymethylpentose sulfate residue formed by deamination of a disulfated D-glucosamine residue without bond cleavage. Several additional disaccharides derived from the regions of the polymer which contained D-glucuronic acid residues and lower degrees of O-sulfation were also identified among the deamination products. The oligosaccharides that were obtained accounted for 100% of the original carboxyl-reduced heparin, and paper chromatographic profiles of the oligosaccharide separations can be used as a fingerprint of the heparin preparation. The properties of I were examined in greater detail. The glycosidic bond of the L-idosyl 2-sulfate residue was found to be extremely labile to 0.1 N HCl at 100 degrees C, hydrolyzing with a t 1/2 of 18 min to give high yields of L-idose 2-sulfate and anhydro-D-mannitol 6-sulfate. L-Idofuranose was also identified as an intermediate in the conversion of L-idose 2-sulfate to L-idosan. The acid lability of the L-idosyl 2-sulfate bond in I offers a new route for the selective cleavage of carboxyl-reduced heparin.  相似文献   

11.
Beta-N-Acetylgalactosaminidase [EC 3.2.1.53] was purified to homogeneity from the culture media of Bacillus sp. AT173-1. The enzyme has a molecular weight of 48,000 as estimated by SDS-PAGE under reducing conditions and an isoelectric point of 4.3. The enzyme requires dithiothreitol as an activator and is most active at pH 6.0. Analysis of its substrate specificity using 2-aminopyridine-labeled oligosaccharides as substrates revealed the enzyme specifically hydrolyzes beta-N-acetylgalactosaminyl linkages of GalNAcbeta1-4Galbeta1-4Glc, GalNAcbeta1-3Gal alpha1-4Galbeta1-4Glc, and N-glycans terminating with beta-N-acetylgalactosamine residues but not those with beta-N-acetylglucosamine residues. The enzyme is thus a novel beta-N-acetylgalactosaminidase with practically no beta-N-acetylglucosaminidase activity.  相似文献   

12.
1. Human N-acetylgalactosamine-6-sulfate sulfatase (EC 3.1.6.-) from human placenta has been purified more than 3000-fold by gel filtration, ion-exchange and substrate affinity chromatography. The enzyme has a molecular weight of 90 000 by gel filtration chromatography and 85 000 by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Enzyme purified from cultured human skin fibroblasts has similar properties. 2. The tritium-labeled chrondroitin 6-sulfate trisaccharide N-acetylgalactosamine 6-sulfate-(beta, 1-4)-glucuronic acid-(beta, 1-3(-N-acetyl[1-3H]galactosaminitol 6-sulfate as substrate demonstrated a Km of 0.12 mM at pH 4.5. Sulfate was hydrolyzed only from the non-reducing terminal of this disulfated trisaccharide. Hyaluronic acid, dermatan sulfate, chondroitin 4-sulfate, heparin and chondroitin 6-sulfate tetrasaccharide were slightly inhibitory, whereas 6-sulfated pentasaccharides and heptasaccharides were strongly inhibitory. The enzyme dose not hydrolyze sulfate from N-acetylglucosamine 6-sulfate.  相似文献   

13.
We have demonstrated by affinity chromatography that hepatocyte growth factor (HGF) binds strongly to heparan sulfate (HS). This substantiates previous suggestions that cell-surface heparan sulfate proteoglycans constitute the so-called low affinity cellular binding sites for HGF. Using a recombinant human HGF affinity column, we have analyzed the effects of various specific chemical and enzymatic modifications/depolymerizations of HS on its affinity in order to elucidate the polysaccharide structural determinants. Interaction is shown to be only slightly affected by digestion with heparinase I or III or by replacement of N-sulfates with N-acetyl groups. This suggests a specific role for sulfated domains containing nonsulfated IdceA residues, with only a small contribution from N-sulfates and IdceA(2-OSO3) residues. In addition, disaccharide analyses of various HGF-binding oligosaccharides indicate that affinity is more closely associated with 6-O-sulfation of GlcNSO3 residues than with sulfation at any other position. Although interaction can be demonstrated with heparinase III-resistant oligosaccharides as small as hexasaccharides, the highest affinity was found with oligosaccharides containing a minimum of 10-12 monosaccharides. The structural specificity of the HGF-HS interaction is thus shown to be radically different from that previously described for the basic fibroblast growth factor-HS interaction.  相似文献   

14.
Five oligosaccharide alpha1-phosphates and one sulfated glycopeptide have been isolated from the hemofiltrate of one patient with end-stage renal disease. Isolation of these compounds has been achieved using reverse osmosis, ion-exchange and size-exclusion chromatography and high performance liquid chromatography. The structures were predominantly elucidated by one- and two-dimensional 1H and 31P NMR spectroscopy. The chemical structures were determined to be: 1 NeuAc alpha2-3Gal alpha1-OPO3H2; 2 NeuAc alpha2-6Galbeta1-4GlcNAc alpha1-OPO3H2; 3 NeuAc alpha2-3Galbeta1-3GalNAc alpha1-OPO3H2; 4 NeuAc alpha2-3Galbeta1-3[NeuAc alpha2-6]GalNAc alpha1-OPO3H2 (proposed structure); 5 Fuc alpha1-2Galbeta1-4[Fuc alpha1-3]GlcNAc alpha1-OPO3H2; 6 HOSO3-4Fuc alpha1-6GlcNAcbeta1-NAsn. While 2 and 3 have been previously characterized as compounds of urine and hemofiltrate, the oligosaccharide alpha1-phosphates 1, 4, and 5 could be isolated--to our knowledge--for the first time from biological material. Compound 6 is the first glycopeptide reported to contain a 4-sulfated fucose residue.  相似文献   

15.
Infectious Neisseria gonorrhoeae make relatively large lipooligosaccharides (LOS) that structurally resemble human glycosphingolipids. MS11mkC is an LOS variant of N. gonorrhoeae strain MS11 which was isolated from men at the onset of dysuria (Schneider, H., Griffiss, J. M., Boslego, J. W., Hitchcock, P. J., Zahos, K. M., and Apicella, M. A. (1991) J. Exp. Med. 174, 1601-1605). Delayed extraction matrix-assisted laser desorption and ionization and electrospray ionization mass spectrometry of O-deacylated MS11mkC LOS produced ions consistent with known LOS which have lacto-N-neotetraose (Galbeta1-->4GlcNAcbeta1-->3Galbeta1-->4Glc; paraglobosyl; monoclonal antibodies (mAbs) 1B2(+) and 06B4(+)) and GalNAc-->lacto-N-neotetraose (gangliosyl; mAb 1-1-M+) oligosaccharides. Ion peaks for a larger LOS which also bound mAb 1B2 indicated the addition of a hexose (+162 Da) to gangliosyl LOS or the addition of a hexose and a N-acetylhexosamine (+365 Da) to paraglobosyl LOS. Analysis of HF-treated and O-deacylated LOS revealed three major components present in a phosphoethanolamine (PEA)0 and a PEA1 series. Digestion of MS11mkC LOS by beta-N-acetylhexosaminidase and beta-galactosidase, alone and sequentially, combined with mAb binding patterns, confirmed the presence of a nonreducing terminal repeating LacNAc ((Galbeta1-->4GlcNAc)2) on the largest LOS, rather than a parallel oligosaccharide structure.  相似文献   

16.
The concentration, composition and sulfate labeling of glycosaminoglycans and glycoproteins have been studied in purified nuclei isolated in bulk from rat brain. The concentration of total glycosaminoglycans is 0.142 mumol hexosamine/100 mg protein, comprising 57% chondroitin 4-sulfate, 7% chondroitin 6-sulfate, 29% hyaluronic acid and 7% heparan sulfate. Control experiments demonstrated that less than 5% of the sulfated glycosaminoglycans associated with nuclei could be accounted for by the nonspecific adsorption of soluble acidic proteoglycans to basic nuclear proteins. Glycoprotein carbohydrate is present at a level of 206 mug/100 mg protein, and has an average composition of 30% N-acetylglucosamine, 29% mannose, 19% N-acetylneuraminic acid, 15% galactose, 4% N-acetylgalactosamine, and 3% fucose. Labeling studies also indicated the presence of ester sulfate residues on the glycoprotein oligosaccharides.  相似文献   

17.
The inhibitory effects of various sulfated compounds on the activities of sialidases purified from porcine liver and human placenta were investigated. Among the sulfated compounds tested, heparin, dextran sulfate, condroitin sulfates and sulfatide significantly inhibited the 4-methylumbelliferyl-alpha-N-acetylneuraminic acid (4-MU-NeuAc) sialidase activities of the two enzyme preparations, but glucose 6-sulfate and glucosamine 6-sulfate did not. Potassium sulfate showed an inhibitory effect only at high concentrations. When the sialidase activities were measured using natural substrates, the sialidase activities for the (alpha2-3) and (alpha2-6) sialyllactoses, and colominic acid, were markedly inhibited by heparin and sulfatide similar to 4-MU-NeuAc, although the fetuin sialidase activity was not significantly influenced by them. The sialidase activity hydrolyzing GM3 was strongly inhibited by heparin, but not by sulfatide.  相似文献   

18.
Fibromodulin has been isolated from bovine and equine articular cartilage and the attached keratan sulphate chains subjected to digestion by keratanase II. The oligosaccharides generated have been reduced and subsequently isolated by strong anion-exchange chromatography. Their structures have been determined by high-field 1H-NMR spectroscopy and high-pH anion-exchange chromatography. Both alpha(2-6)- and alpha(2-3)-linked N-acetylneuraminic acid have been found in the capping oligosaccharides, and, fucose which is alpha(1-3)-linked to N-acetylglucosamine has been found as a branch in both repeat region and capping oligosaccharides. These data demonstrate that there are fundamental differences between the structures present in the N-linked keratan sulphate chains attached to fibromodulin from articular cartilage and those from tracheal cartilage, which lack both alpha(2-6)-linked N-acetylneuraminic acid and alpha(1-3)-linked fucose. It has been confirmed that the keratan sulphate chains are short, being only eight or nine disaccharides in length. Very significant differences in the levels of galactose sulphation have been identified at the non-reducing end of the chain. The galactose residue adjacent to the non-reducing cap is sulphated in only 1-3% of chains, compared with a sulphation level of over 40% closer to the reducing end. This highlights the difference between the chain termini and the repeat region in terms of structure and points to the potential for functional importance. The repeat region and capping fragments of the N-linked keratan sulphates from bovine and equine articular cartilage fibromodulin have been found to have the following general structure: NeuAc-(alpha 2-3/6)Gal[6SO3-](beta 1-4)GlcNAc6SO3-(beta 1-3)Gal[6SO3-] (beta 1-4)?[Fuc(alpha 1-3)]0-1GlcNAc6SO3-(beta 1-3)Gal-[6SO3-](beta 1-4)? 6-7GlcNAc6SO3-.  相似文献   

19.
Escherichia coli K4 bacteria synthesize a capsule polysaccharide (GalNAc-GlcA(fructose))n with the carbohydrate backbone identical to chondroitin. GlcA- and GalNAc-transferase activities from the bacterial membrane were assayed with acceptors derived from the capsule polysaccharide and radiolabeled UDP-[14C]GlcA and UDP-[3H]GalNAc, respectively. It was shown that defructosylated oligosaccharides (chondroitin) could serve as substrates for both the GlcA- and the GalNAc-transferases. The radiolabeled products were completely degraded with chondroitinase AC; the [14C]GlcA unit could be removed by beta-D-glucuronidase, and the [3H]GalNAc could be removed by beta-N-acetylhexosaminidase. A fructosylated oligosaccharide acceptor tested for GlcA-transferase activity was found to be inactive. These results indicate that the chain elongation reaction of the K4 polysaccharide proceeds in the same way as the polymerization of the chondroitin chain, by the addition of the monosaccharide units one by one to the nonreducing end of the polymer. This makes the biosynthesis of the K4 polysaccharide an interesting parallel system for studies of chondroitin sulfate biosynthesis. In the biosynthesis of capsule polysaccharides from E. coli, a similar mechanism has earlier been demonstrated for polysialic acid (NeuNAc)n (Rohr, T. E., and Troy, F. A. (1980) J. Biol. Chem. 255, 2332-2342) and for the K5 polysaccharide (GlcAbeta1-4GlcNAcalpha1-4)n (Lidholt, K., Fjelstad, M., Jann, K., and Lindahl, U. (1994) Carbohydr. Res. 255, 87-101). In contrast, chain elongation of hyaluronan (GlcAbeta1-3GlcNAcbeta1-4)n is claimed to occur at the reducing end (Prehm, P. (1983) Biochem. J. 211, 181-189).  相似文献   

20.
The substrate specificity and kinetic properties of a pure sialyltransferase from bovine colostrum have been examined. The transferase appears to incorporate sialic acid into the sequence, NeuAcalpha2 leads to 6Galbeta1 leads to 4GlcNAc, which is commonly found in glycoproteins. It has a strict substrate specificity for CMP-NeuAc and forms only the alpha2 leads to 6 sialyl linkage with beta-D-galactosides. N-Acetyllactosamine (Galbeta1 leads to 4GlcNAc) and asialo-glycoproteins containing the N-acetyllactosaminyl linkage at the nonreducing ends of the oligosaccharides prosthetic groups are the best acceptor substrates. Isomers of N-acetyllactosamine with beta1 leads to 3 or beta1 leads to 6 glycosidic linkages are less than 1% as effective as acceptor substates as the beta1 leads to 4-linked isomer. Lactose (Galbeta1 leads to 4Glc) is also a poor acceptor, indicating the importance of the 2-acetamido group in the N-acetylglucosaminyl residues. The unnatural substrate beta-methyl-L-arabinopyrano-side, a five-carbon analog of beta-methyl-D-galactoside which contains no 6-hydroxyl, also acts as a poor acceptor of the transferase and the sialylated product has been partially characterized. Kinetic properties of the enzyme in the presence and absence of inhibitors suggest that the transferase has an equilibrium random order mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号