首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reduction of toxic hexavalent chromium to its trivalent state at conducting polymers films was studied. The process is based on the capacity of conducting polymers to spontaneously donate electrons to the Cr(VI) species. Electrodes of polyaniline and polypyrrole, deposited as films on reticulated vitreous carbon (RVC), were prepared. The process of Cr(VI) reduction was studied under open and closed circuit conditions. It was observed that polyaniline was only suitable for use only under closed circuit conditions, whereas polypyrrole did not perform well under either open or closed circuit conditions. The electrocatalytic power of polyaniline for Cr(VI) reduction was demonstrated when the reaction rates for bare RVC and RVC/PANI were compared.  相似文献   

2.
Adherent polypyrrole films were electropolymerized from a tosylic acid solution onto an aluminium substrate and used for the reduction of Cr(VI). The reduction of Cr(VI) to the trivalent state was found to proceed by pseudo-first-order kinetics with an activation energy barrier of 15.13 kJ mol–1. This catalyst could be regenerated by reducing the composite at a sufficiently negative potential, in the absence of Cr(VI). However, it was found that the catalyst functioned also through a self-sustained regeneration mechanism. In this mechanism, Cr(VI) was reduced by PPy0 to generate PPy+, but the PPy+ was subsequently reduced to PPy0 by oxidation of the aluminium substrate, thus regeneration of the catalytic PPy0 surface giving rise to a synergistic action between the polypyrrole and the aluminium substrate.  相似文献   

3.
The galvanic reaction of metallic copper in Cr(VI)-laden aqueous solutions of varying pH was examined by in situ u.v.–visible spectrophotometry, rotating disc electrode chronopotentiometry and cyclic voltammetry. The galvanic reaction in 0.2 M H2SO4 solutions was pseudo first order in Cr(VI) concentration. Experiments with both magnetically stirred solutions and a copper mesh or a copper film in a rotating disc electrode configuration revealed the reaction to be diffusion-controlled with respect to Cr(VI) transport to the copper surface. Finally, cyclic voltammetry data in Cr(VI)-laden media of varying pH underline the important role of protons in the galvanic reaction.  相似文献   

4.
李玥琪  胡敬芳  邹小平  高国伟 《化工学报》2017,68(12):4816-4823
针对我国水质重金属六价铬(Cr(Ⅵ))污染问题突出,提出了一种基于石墨烯纳米材料的水质Cr(Ⅵ)电化学传感器。采用电化学方法还原氧化石墨烯,构建石墨烯纳米材料修饰金电极(rGO/Au)。采用扫描电子显微镜(SEM)和透射电子显微镜(TEM)技术表征了rGO/Au的表面形貌和结构;采用方波伏安法、循环伏安法和线性扫描伏安法等电化学方法研究了Cr(Ⅵ)在rGO/Au表面的直接电催化还原行为,优化了氧化石墨烯的电化学还原电位和还原时间,以及支持电解质pH、浓度和检测电位等实验参数;采用计时电流法,在无须预富集的条件下,考察了Cr(Ⅵ)浓度与rGO/Au响应电流之间的线性关系。实验结果表明,石墨烯纳米材料对Cr(Ⅵ)有明显的电催化还原活性,计时电流响应值与Cr(Ⅵ)浓度呈良好的线性关系,线性范围为5~2000μg·L-1,最低检测限为0.5 μA·L-1(S/N≥3)。所制备的rGO/Au具有对常见其他重金属干扰离子(Cr(Ⅲ)、Ni(Ⅱ)、Cu(Ⅱ)、Mg(Ⅱ)和Mn(Ⅱ))较好的抗干扰性能,11次连续测定后,响应值相对初始值下降幅度小于10%,表明该修饰电极具有较好的稳定性。本研究提出的电化学传感器具有检测方法简单、快速、环保以及可重复使用的优点,能够应用于水质重金属Cr(Ⅵ)的快速测定。  相似文献   

5.
This paper presents the fabrication of poly(aniline-co-o-toluidine)/graphene oxide nanocomposite with a general abbreviation [PANI-co-PoT/GOa–e] by well-known in-situ oxidative polymerization method with ultrasonic assistance. These materials were based on variable loading of GO when prepared. The chemical structures of the composite materials were confirmed by characterization technique. The FE-SEM and TEM micrographs were used to investigate the morphological features. Furthermore, FT-IR, XRD, TGA, and electrical conductivity measurements were utilized to estimate its complete performance. All nanocomposites showed CDTmax values in the range of 287.25–463.51 ºC which is significantly higher than that observed for pure copolymer (204.79 ºC). The main focus of this paper is to study the electroselective application using gold nanoparticle as a coating. A steady electroactive modified electrode [AuNPs/PANI-co-PoT/GO] was effectively prepared on a gold electrode (Au) surface using an electroadsorption process for the determination of Cr(VI). The electrochemical attitude of the modified sensor toward the reduction of Cr(VI) was studied by a square wave voltammetry (SWV) and a cyclic voltammetry (CV) technique. The AuNPs/PANI-co-PoT/GO modified electrode displayed a perfect electrochemical activity toward the reduction of Cr(VI). Using an SWV method, the modified electrode gave a linear response to Cr(VI) through the concentration range 5–500 µM with a limit of detection 0.0215 µM. The suggested sensor displayed good stability, sensitivity and selectivity and has exhibited potential for the detection of Cr(VI) in real samples.  相似文献   

6.
The properties and electrocatalytic activity were studied of composite carbon‐supported materials based on heterocyclic polymer and nickel, in particular carbon/polyaniline/nickel, carbon/polypyrrole/nickel, carbon/poly(3‐methylthiophene)/nickel, as well as their precursors, carbon/polyaniline, carbon/polypyrrole, and carbon/poly(3‐methylthiophene). The materials were characterized by means of thermogravimetric analysis (TGA), scanning electron microscopy (SEM), EDAX, and electrochemical methods, such as cyclic voltammetry and linear voltammetry using RDE. SEM show porous materials, with a particle size of around 0.3 μm. It was found that in nickel‐modified catalysts between 5 and 6 wt % of nickel is obtained. TGA and FTIR show that the modification with nickel alters the polymer bonds. Curves from cyclic voltammetry show cathodic peaks corresponding to the oxygen reduction reaction (ORR) in all materials, occurring at relatively low potentials. Based on the potential range for ORR as well as kinetic parameters obtained from linear voltammetry using RDE, it was concluded that C‐Ppy‐Ni shows the best performance for ORR in acidic medium. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
A novel method was developed to synthesize bi-metallic nanoparticles (Au–Pt) on boron-doped diamond (BDD) substrate. This method consisted of (a) deposition of a small amount of gold (equivalent to a few monolayers) by sputtering on the BDD surface, (b) heat treatment of the obtained sample at 600 °C in air, resulting in the formation of stable nanoparticles on BDD (Au/BDD electrode), (c) electrodeposition of Pt on the Au/BDD surface occurring preferentially on the Au nanoparticles, and finally (d) heat treatment at 400 °C to enhance the interaction between Au and Pt. The ratio between Au and Pt nanoparticles can be modified by modifying the amount of electrodeposited Pt and was estimated using cyclic voltammetry. These Pt-Au/BDD composite electrodes were used to study oxygen reduction using both potential sweep (cyclic voltammetry) and hydrodynamic (turbine electrochemical cell) methods.  相似文献   

8.
9.
The application of conducting polypyrrole (PPy) and polyaniline (PAni) coated substrates in remediation of chromium, Cr(VI), is an area of considerable interest. Here, we discuss the implementation of PPy-coated titanium as a new material for the reduction of Cr(VI) to the less toxic trivalent state, Cr(III). An alkaline-peroxide based etching process was used to ensure the adhesion of the PPy coatings to the underlying titanium. The PPy films showed excellent resistance to acidic Cr(VI) solutions and remained adherent after continuous exposure to the solutions. In order to optimise the remediation process a number of experimental parameters were investigated, including the thickness of the PPy coating, the reduction potential used in pre-treatment of the PPy and the degree of solution agitation. The durability of the materials on exposure to the Cr(VI) test solutions made them suitable for repeated remediation experiments. Following several test-runs, the cleanup efficiency of the material was found to decrease slightly, however, increasing the exposure/experiment time resulted in significantly improved cleanup ability.  相似文献   

10.
The electrosynthesis of polypyrrole (PPy) has been achieved on aluminium in aqueous medium of tartaric acid by means of cyclic voltammetry, potentiostatic and galvanostatic techniques. Scanning electron microscopy (SEM) and X-ray microanalysis by energy spectroscopy dispersion (EDS) applying on surfaces show that the PPy coating is developed from the metal surface through the cracks of the initial Al2O3 layer.A mechanism involving the participation of the supporting electrolyte and the pyrrole (Py) in distinct active sites was proposed based on the linear sweep voltammetry. It is observed for all applied electrochemical techniques that the pyrrole concentration has to be higher than 0.1 M to allow the polypyrrole electrodeposition in acid medium.Scanning electron microscopy, secondary electrons (SE) and backscattering electrons (BE), shows that the PPy coating obtained in galvanostatic and potentiostatic modes starts with small islands at weak applied potentials or current densities. Moreover, EDS reveals a good homogeneity and compactness of the film achieved in galvanostatic method. The corrosion results in 3% NaCl medium show that the PPy coating decreases the corrosion behaviour of the aluminium. The bilayer Al2O3/PPy shows a capacitor with future applications.  相似文献   

11.
Abstract

This study focuses on the fabrication of biocomposite electrode and removal of Cr (VI) ions from wastewater using a capacitive deionization (CDI) method. The activated carbon (AC) was synthesized from Bael fruit shell (BS). The synthesized AC surface has a macroporous and mesoporous structure with the large specific surface area (617.72?m2 g?1) and high adsorption capacity. The cyclic voltammetry and CDI were performed for the detection and for the removal of chromium (VI) ions, respectively. The lower level of detection of Cr (VI) by a modified electrode was found to be 10 ppt. SEM, BET, and FTIR analyses were performed to explore the surface properties of electrode materials. The removal efficiency was achieved 100% by using biocomposite electrode with an applied potential of 15?V. The highest percent removal mechanism consists of electrosorption and electroreduction due to the affinity between polyvinyl alcohol modified electrode and Cr (VI) ions, under electrochemically faradic process.  相似文献   

12.
Polypyrrole films on aluminium alloy 6061-T6 were prepared by electropolymerization of pyrrole in sulphuric acid using two different processes - cyclic voltammetry and potentiostatic polarization - and assessed through SEM observation and voltammetry. The anticorrosive properties of these films were studied by polarization curves and electrochemical impedance spectroscopy.The polypyrrole films formed by both methods are homogeneous and present a globular structure. However, it was found that the films produced by cyclic voltammetry are thicker than those produced potentiostatically at a potential equal to the upper limit of the cyclic voltammetry (Eλa). It was also found that there is an optimum value for the formation potential (Eappl, in the case of the potentiostatic method or Eλa for cyclic voltammetry). Above this value, overoxidation of the polymer occurs, which is found to be deleterious to the coated system behaviour.From polarization curves no major differences were detected between the PPy-coated alloy and the bare material, indicating that no significant protection is achieved by the polymer coating. On the other hand, Bode diagrams are typical of a system undergoing pitting corrosion and show lower impedance values for the alloy covered with polypyrrole than for the bare metal. This can be attributed to the conductive character of the polypyrrole films.  相似文献   

13.
运用循环伏安法、线性扫描伏安法及示差脉冲伏安法等测试技术研究了诺氟沙星在多壁碳纳米管修饰玻碳电极上的电化学行为,建立了一种直接测定诺氟沙星的电化学分析方法.结果表明,与裸玻碳电极相比,多壁碳纳米管修饰电极能显著提高诺氟沙星的氧化峰电流.在优化的实验条件下,氧化峰电流与诺氟沙星浓度在1.0×10-7~1.0×10-6mol/L和1.0×10-6~2.5×10-5 moL/L范围呈现良好的线性关系,检出限为3.0×10-8mol/L对1.0×10-5mol/L诺氟沙星溶液平行测定10次的RSD为4.1%.测定了诺氟沙星胶囊中诺氟沙星的含量,结果满意.  相似文献   

14.
A novel flocculant with the capacities of reduction and chelation was prepared in this paper. The flocculant, called polyethyleneimine–sodium xanthogenate (PEX), was synthesized by modifying polyethyleneimine with carbon disulfide and sodium hydroxide. The effect of pH on the removal of Cr(III) and Cr(VI) from aqueous solution with PEX was investigated by using flocculation experiments. The results showed that in the single-ion system (only including Cr(III) or Cr(VI) in the solution), the final Cr(III) decreased with the increase in pH from 2.0 to 10.0, while the final Cr(VI) increased at first and then decreased with the increase in this pH range studied. The removal of Cr(III) was not desirable at pH lower than 7.0, whereas the final Cr(VI) concentration reached the minimum value of 0.145 mg/L at pH 2.0. In the mixture system of Cr(III) and Cr(VI), the variation tendency for the removal of Cr(III) or Cr(VI) was very similar to that obtained in the single-ion system. The oxidation–reduction potential, zeta potential, and final pH in the supernatant were also measured to analyze the above results. Furthermore, FTIR spectra revealed that dithiocarboxylic acid groups on the macromolecular chains of PEX played a major role in the Cr(VI) reduction and Cr(III) chelation.  相似文献   

15.
The technique of cyclic voltammetry was applied in conjunction with on-line catalytic product analysis to investigate the electrochemical promotion of NO reduction by C3H6 in presence of O2 on Rh catalyst-electrode films on YSZ at temperatures 350–490 °C. Cyclic linear potential sweep amperometry under catalytic reaction conditions leads to cyclic non-Faradaic electrochemical modifications in the CO2 formation and NO reduction rates which are compared to those obtained under steady state potentiostatic operation.  相似文献   

16.
In this work, polypyrrole/clinoptilolite nanocomposite was synthesized by in situ surface polymerization of pyrrole using Fe3+ as oxidant, incorporated on the inner and outer surface of clinoptilolite nanoparticles. Formation of nanocomposite and deposition of polypyrrole on the clinoptilolite surface was confirmed and characterized using Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD) patterns, scanning electron microscopy (SEM), and cyclic voltammetry techniques. Elemental analysis showed the loading/incorporation of 9.18 wt% polypyrrole in the clinoptilolite structure. However the electrical conductivity of polypyrrole/clinoptilolite nanocomposite pellets was higher than that of similar pure polypyrrole pellets, synthesized through the chemical oxidation polymerization method using Fe3+ as oxidant without the presence of clinoptilolite nanoparticles. Improved structural order or crystalinity of polypyrrole chains in nanocomposite structure which was confirmed by XRD and SEM results, may be the responsible of higher electrical conductivity of nanocomposite compared to pure polypyrrole although the low content (9.18 wt%) of polypyrrole in nanocomposite. Cyclic voltammetry studies showed that polypyrrole/clinoptilolite nanocomposite is electroactive similar to pure polypyrrole. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

17.
Functionalized polypyrrole (PPy) film with anthraquinonedisulphonate (AQDS) incorporated as dopant was prepared by anodic polymerization of pyrrole (Py) at a glassy carbon electrode from aqueous solution. The electrochemical behavior of AQDS in PPy matrix and the electrocatalytic reduction of dioxygen on the resulting composite film were investigated in various pH solutions. The formal potential of AQDS and the reduction potential of dioxygen both exhibit pH dependence. In all pH solutions employed, the electrocatalytic reduction of dioxygen at the PPy/AQDS composite film establishes a pathway of irreversible two-electron reduction to form hydrogen peroxide. The pH 6.0 buffer solution is a more suitable medium for the reduction of dioxygen, where the PPy/AQDS composite film showed a more efficient electrocatalytic performance. It was found that AQDS is an effective mediator for the reduction of dioxygen and the reduced AQ is responsible for the enhanced catalytic activity. The catalytic current is under mixed kinetic-diffusion control. The number of electrons transferred and kinetic parameters of dioxygen reduction were determined using cyclic voltammetry, rotating disk voltammetry and Tafel polarization technique.  相似文献   

18.
The polypyrrole and polyaniline copolymer coating (PPy‐PAni) and PPy‐PAni doped with sodium molybdate copolymer coating ( ) were synthesized on stainless steel by cyclic voltammetry. The effect of molybdate on the passivation of stainless steel was investigated by linear sweep voltammetry in 0.2 mol L?1 of oxalic acid. The corrosion prevention performances of these copolymer coatings for stainless steel were investigated by linear sweep voltammetry, electrochemical impedance spectroscopy in 1 mol L?1 of sulfuric acid, and potentiodynamic polarization in 0.1 mol L?1 of hydrochloric acid. Copolymer coating doped with molybdate could accelerate the formation of the passive oxide film and have better corrosion prevention efficiencies than PPy‐PAni coating on stainless steel. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40602.  相似文献   

19.
This work experimentally investigates Cr(VI) reduction to Cr(III) using waste scrap iron in the form of zerovalent iron (ZVI) collected from the mechanical workshop of the Institute, both in batch and continuous operation. The reduction of Cr(VI) to Cr(III) was found to be complete (~100%) depending on the experimental conditions. Lower pH values favour Cr(VI) reduction. Two concurrent reactions take place, that is reduction of Cr(VI) by Fe0 (ZVI) and by Fe2+ generated due to H+ corrosion of iron. Maximum around 22%, 11% and 2% Cr(III) remained dissolved in solution while the experiments were carried out at initial pH of 2, 4.67 and 7. Higher ZVI loading increases Cr(VI) reduction rate, however, consumption of iron is noted to be higher. The results indicate that the bed is exhausted rapidly at higher pH, initial Cr(VI) concentration and flow rate. This is attributable to predominance passivation of ZVI surface forming Cr(III)–Fe(III)‐oxide layer. SEM analysis of ZVI before and after the experiments confirms formation of passive oxide on iron surface is responsible for deterioration of Cr(VI) reduction efficiency due to its blanketing effect.  相似文献   

20.
The electrodeposition of polyaniline–polypyrrole composite coatings on aluminum was successfully performed by using cyclic voltammetry. Oxalic acid was used as the electrolyte. Electrodeposition was carried out at a scan rate of 20 mV/s by varying the number of cycles. An anodic peak current at around ?0.1 V versus saturated calomel electrode (SCE) was observed in the cyclic voltammograms. This peak is due to the oxidation and adsorption of hydrogen. The cyclic voltammograms also show another anodic peak current at around 1.0 V versus SCE, which is the characteristic peak of the polyaniline–polypyrrole composite. The behavior of this peak with respect to the number of cycles is discussed in detail. A corresponding cathodic peak current at around ?0.7 V versus SCE was also observed in the cyclic voltammograms. The infrared spectra of the composite coatings revealed the infrared peaks of both polypyrrole and polyaniline. The scanning electron micrographs of the coatings indicate a morphology completely different from its homopolymers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1970–1977, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号