首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
《Computers & Structures》1987,26(3):469-479
A methodology is presented for the optimum design of aircraft wing structures subjected to taxiing loads. The dynamic stresses induced in the wing as the airplane accelerates or decelerates on the runway during take-off or landing are computed by considering the interaction between the landing gear and the flexible airplane structure. The procedure is capable of taking into account both the effects of discrete runway bumps and the effects of runway unevenness. A numerical step-by-step method is developed for solving the nonlinear differential equations of motion. The optimization methodology is illustrated with two examples. The first example deals with the design of the typical section (symmetric double wedge airfoil). This example is studied by using a graphical procedure mainly to understand qualitatively the behavior of wing structures under taxiing loads and also to obtain a physical insight into the nature of the optimum solution. The second example is concerned with the design of a more realistic wing structure. In this case, the problem is formulated and solved as a constrained nonlinear programming problem based on finite element modeling.  相似文献   

2.
A methodology is presented for the optimum design of aircraft wing structures subjected to gust loads. The equations of motion, in the form of coupled integro-differential equations, are solved numerically and the stresses in the aircraft wing structure are found for a discrete gust encounter. The gust is assumed to be one minus cosine type and uniform along the span of the wing. In order to find the behavior of the wing structure under gust loads and also to obtain a physical insight into the nature of the optimum solution, the design of the typical section (symmetric double wedge airfoil) is studied by using a graphical procedure. Then a more realistic wing optimization problem is formulated as a constrained nonlinear programming problem based on finite element modeling and the optimum solution is found by using the interior penalty function method. A sensitivity analysis is conducted to find the effects of changes in design variables about the optimum point on the response quantities of the wing structure.  相似文献   

3.
An interval-based automated optimization of aircraft wing structures subjected to landing loads is discussed in this paper. The interaction between landing gear and flexible airplane structure is considered as a coupled system. The uncertain system parameters are described as interval numbers. The computational aspects of the optimization procedure are illustrated with two examples – symmetric double-wedge airfoil, and supersonic airplane wing. Since, in most cases only the ranges of uncertain parameters are known with their probability distribution functions unknown, the present methodology is expected to be more realistic for the optimum design of aircraft structures under landing loads.  相似文献   

4.
A topology optimization methodology is presented for the conceptual design of aeroelastic structures accounting for the fluid–structure interaction. The geometrical layout of the internal structure, such as the layout of stiffeners in a wing, is optimized by material topology optimization. The topology of the wet surface, that is, the fluid–structure interface, is not varied. The key components of the proposed methodology are a Sequential Augmented Lagrangian method for solving the resulting large-scale parameter optimization problem, a staggered procedure for computing the steady-state solution of the underlying nonlinear aeroelastic analysis problem, and an analytical adjoint method for evaluating the coupled aeroelastic sensitivities. The fluid–structure interaction problem is modeled by a three-field formulation that couples the structural displacements, the flow field, and the motion of the fluid mesh. The structural response is simulated by a three-dimensional finite element method, and the aerodynamic loads are predicted by a three-dimensional finite volume discretization of a nonlinear Euler flow. The proposed methodology is illustrated by the conceptual design of wing structures. The optimization results show the significant influence of the design dependency of the loads on the optimal layout of flexible structures when compared with results that assume a constant aerodynamic load.  相似文献   

5.
嵇鼎毅  陆宇平 《计算机测量与控制》2007,15(10):1340-1342,1345
飞翼飞机是一种先进的飞行结构.但由于气动外形的特殊,无垂直尾翼的飞翼飞机在着陆阶段,极易受到侧风的干扰,而使其偏离航线;根据飞翼飞机的气动参数,建立了飞翼飞机的非线性数学模型,设计了飞翼无人机的着陆轨迹和控制方案;针对飞翼飞机的特性,采用不同于常规飞机的控制律,设计了抗侧风自动着陆控制系统;设计的控制系统经过非线性仿真试验,结果显示,飞机抗侧风着陆性能达到了设计要求,从而验证了设计方案的可行性.  相似文献   

6.
A morphing wing concept has been investigated over the last decade because it can effectively enhance aircraft aerodynamic performance over a wider range of flight conditions through structural flexibility. The internal structural layouts and component sizes of a morphing aircraft wing have an impact on aircraft performance i.e. aeroelastic characteristics, mechanical behaviors, and mass. In this paper, a novel design approach is proposed for synthesizing the internal structural layout of a morphing wing. The new internal structures are achieved by using two new design strategies. The first design strategy applies design variables for simultaneous partial topology and sizing optimization while the second design strategy includes nodal positions as design variables. Both strategies are based on a ground structure approach. A multiobjective optimization problem is assigned to optimize the percentage of change in lift effectiveness, buckling factor, and mass of a structure subject to design constraints including divergence and flutter speeds, buckling factors, and stresses. The design problem is solved by using multiobjective population-based incremental learning (MOPBIL). The Pareto optimum results of both strategies lead to different unconventional wing structures which are superior to their conventional counterparts. From the results, the design strategy that uses simultaneous partial topology, sizing, and shape optimization is superior to the others based on a hypervolume indicator. The aeroelastic parameters of the obtained morphing wing subject to external actuating torques are analyzed and it is shown that it is practicable to apply the unconventional wing structures for an aircraft.  相似文献   

7.
由于飞机前起落架与主起落架收放方向不同导致前起落架更容易受气动阻力影响而产生收放不到位等故障。对此利用AMEsim对某型飞机前起落架进行建模仿真,并通过建立起落架机械模型完成作动筒受力分析,将一些单一因素和混合因素分别注入到模型中对起落架收放性能进行仿真实验。实验结果表明,单一因素中油泵泄漏、作动筒限流阀阻塞、作动筒内漏对系统性能影响较大,同时两个单一且无法引发起落架故障的因素,其叠加形成的混合因素却能引发起落架故障。仿真结果可用于指导起落架收放系统参数设计、故障分析及健康管理。  相似文献   

8.
A mixed genetic algorithm and particle swarm optimization in conjunction with nonlinear static and dynamic analyses as a smart and simple approach is introduced for performance-based design optimization of two-dimensional (2D) reinforced concrete special moment-resisting frames. The objective function of the problem is considered to be total cost of required steel and concrete in design of the frame. Dimensions and longitudinal reinforcement of the structural elements are considered to be design variables and serviceability, special moment-resisting and performance conditions of the frame are constraints of the problem. First, lower feasible bond of the design variables are obtained via analyzing the frame under service gravity loads. Then, the joint shear constraint has been considered to modify the obtained minimum design variables from the previous step. Based on these constraints, the initial population of the genetic algorithm (GA) is generated and by using the nonlinear static analysis, values of each population are calculated. Then, the particle swarm optimization (PSO) technique is employed to improve keeping percent of the badly fitted populations. This procedure is repeated until the optimum result that satisfies all constraints is obtained. Then, the nonlinear static analysis is replaced with the nonlinear dynamic analysis and optimization problem is solved again between obtained lower and upper bounds, which is considered to be optimum result of optimization solution with nonlinear static analysis. It has been found that by mixing the analyses and considering the hybrid GA-PSO method, the optimum result can be achieved with less computational efforts and lower usage of materials.  相似文献   

9.
在备战打仗大环境下,为了给装备试验考核提供技术参考,针对滑跑起降无人机起降阶段机身-起落架-地面之间复杂的动态特性,本文建立了飞机-起落架-跑道的系统动力学仿真模型及动力学方程,分别采用多尺度法和有限元分析法研究了其在不同气动载荷、重力以及作动筒载荷耦合作用下的系统动力学特性,并对可靠性和安全性进行了仿真分析.结果表明,不同降落速度对起落架-地面系统的动力学行为有较大的影响;起落架系统强度、刚度和安全特性满足相关指标.通过滑跑起降无人机动态安全特性以及在飞行作战中的极限疲劳寿命分析,为后续武器装备的考核以及性能底数评估提供了技术参考.  相似文献   

10.
为提高舰载机起落架的缓冲性能,采用多体系统仿真和多目标参数优化协同仿真分析相结合的方法,以iSIGHT为设计和仿真平台,在优化参数的同时调用多体系统仿真软件进行仿真分析.对前起落架缓冲系统进行受力分析,用MSC Adams/Aircraft建立某型舰载机起落架落震功能虚拟样机,实现可循环迭代求解落震质量的优化;考虑舰载...  相似文献   

11.
为了实现自动地利用虚拟样机技术来分析飞机起落架的地面载荷,讨论了如何采用Delphi软件作为开发平台,结合Adams软件的参数化功能,设计起落架着陆仿真分析系统.主要论述了仿真分析和参数化建模的原理,程序化语言编写起落架仿真软件界面的方法,以及模型和数据库之间连接的问题.经实践应用证明,系统能够实现起落架的仿真模型和全机装配模型的自动化建立和结果分析,通过对某型起落架模型的对比分析,验证了该仿真系统计算能力的可信度.  相似文献   

12.
Allowable stress design of two-dimensional braced and unbraced steel frames based on AISC specifications subject to gravity and seismic lateral forces is formulated as a structural optimization problem. The nonlinear constrained minimization algorithm employed is the feasible directions method. The objective function is the weight of the structure, and behaviour constraints include combined bending and axial stress, shear stress, buckling, slenderness, and drift. Cross-sectional areas are used as design variables. The anylsis is performed using stiffness formulation of the finite element analysis method. Equivalent static force and response spectrum analysis methods of seismic codes are considered. Based on the suggested methodology, the computer program OPTEQ has been developed. Examples are presented to illustrate the capability of the optimal design approach in comparative study of various types of frames subjected to gravity loads and seismic forces according to a typical code.  相似文献   

13.
舰载机前起落架突伸的动力学响应分析   总被引:1,自引:0,他引:1  
为研究舰载机前轮拖拽弹射起飞技术,基于多体系统动力学理论,建立模拟舰载机前起落架突伸的4自由度多体动力学模型,推导出系统的动力学微分方程.利用该模型,用数值方法仿真舰载机前起落架的突伸运动,得出突伸过程中舰载机的重心位置、俯仰角和前起落架空气弹簧力等参数的动态响应特性.仿真结果可为舰载机及其起落架设计提供参考.  相似文献   

14.
The problem of optimum design of plano-milling machine structure is formulated as a nonlinear mathematical programming problem with the objective of minimizing the structural weight. The plano-milling machine structure is idealized with triangular plate elements and three dimensional frame elements based on finite element displacement method. Constraints are placed on static deflections and principal stresses in the problem formulation. The optimization problem is solved by using an interior penalty function method in which the Davidon-Fletcher-Powell variable metric unconstrained minimization technique and cubic interpolation method of one dimensional search are employed. A numerical example is presented for demonstrating the effectiveness of the procedure outlined. The results of sensitivity analysis conducted with respect to design variables and fixed parameters about the optimum point are also reported.  相似文献   

15.
《Computers & Structures》2007,85(1-2):71-79
Domes are lightweight and cost effective structures that are used to cover large areas. They are mainly comprised of a complex network of triangles made out of slender members. The behaviour of flexible dome is nonlinear under the external loads which makes it necessary to consider the geometrical non-linearity in their analysis to obtain realistic response of these structures. Furthermore, instability check during the nonlinear analysis is of prime importance. In this paper, an algorithm is presented for the optimum geometry design of nonlinear braced domes. The height of crown is taken as design variable in addition to the cross-sectional properties of members. A procedure is developed that calculates the joint coordinates automatically for a given height of the crown. The optimum design algorithm takes into account the nonlinear response of the dome due to the effect of axial forces on the flexural stiffnesses of members. It considers serviceability requirements as well as combined strength limitations set by BS 5950. The solution of the design problem is obtained by genetic algorithm. The elastic instability analysis is then carried out for each individual in the initial population until the ultimate load factor is reached. During this analysis, checks on the overall stability of the dome is conducted. If the loss of stability takes place, this individual is taken out of the population and replaced by a new randomly generated individual. This replacement policy is repeated until an individual is found which does not have instability problem. Once the initial population is established where all the individuals are free of instability problem, the regular genetic operations are applied to generate a new population. Number of design examples are included to demonstrate the application of the algorithm.  相似文献   

16.
基于LMS Virtual.Lab的起落架动态性能仿真分析   总被引:1,自引:0,他引:1  
针对飞机起落架设计和性能分析过程中,传统方法计算过程复杂、计算精度不高、研制周期长,且采用实验研究成本高、局限性大的问题,利用CATIA和LMS Virtual. Lab对某支柱式起落架进行收放运动学和动力学以及落震仿真分析.运用机构运动学正解方法进行主起落架收放运动学仿真分析;在运动学仿真模型中添加质量力、气动阻力、惯性力和摩擦力等参数进行动力学仿真;在不改变起落架机构原理的前提下简化主起落架结构并进行落震仿真分析.落震仿真结果与理论计算结果误差在5%以内,说明仿真结果与理论计算结果一致性较好.利用CATIA和LMS Virtual. Lab可以实现起落架设计与分析一体化,且实现过程简单、可视化强、准确度高.  相似文献   

17.
张广兴  张野 《测控技术》2021,40(8):86-89
在固定翼飞机定点着陆飞行训练过程中,由于测试装备种类数量较少、测试手段有限或装备故障等因素,经常出现测量记录的数据不能满足飞行讲评和飞行质量评估要求的情况,从固定翼飞机定点着陆飞行训练数据分析入手,根据飞机在下滑道中的运动特点,建立了飞机定点着陆训练下滑道段补充条件定位解算的数学模型,在有效测元不足不能运用常规方法进行定位解算的情况下,提供了定位解算的方法.实测数据计算结果验证了这一方法的正确性和有效性.该方法简单实用,可有效提高光电经纬仪有效信息源的利用效率,在固定翼飞机定点着陆飞行训练中具有十分重要的工程应用价值.  相似文献   

18.
In this investigation minimum weight design of wing structures with restrictions on strength, stability and frequency characteristics is attempted. The multiweb delta wing structure is idealized with three different kinds of finite elements. The constant stress triangular plate elements, the rectangular shear panels and pin jointed bar elements are used to represent, respectively, the cover skins, webs and the stringers of wing structures. A parametric study is made to reduce the number of design variables which in turn reduces the required computational effort. The feasibility of employing linearly approximated redesigns is investigated. Numerical results are presented to illustrate the feasibility. Off-design charts have been obtained by performing sensitivity analysis about the final optimum design point.  相似文献   

19.
This paper studies the fault‐tolerant control (FTC) problem for nonlinear systems, with guaranteed cost or H performance objective in the presence of actuator faults. The faulty mode is built as a multi‐model framework of the typical aberration in actuator effectiveness. The novelty of this paper is that the effect of the nonlinear terms is described as an index in order to transform the FTC design problem into a semi‐definite programming. The proposed optimization approach is to find zero optimum for this index. Combined with other performance indexes, the conceived multi‐objective optimization problem is solved by using sum of squares method in a reliable and efficient manner. Numerical examples are included to verify the applicability of this new approach for the nonlinear FTC synthesis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
The preliminary Multidisciplinary Design and Optimisation of a flexible wing aerofoil apropos a small Unmanned Air Vehicle is performed using a multifidelity model-based strategy. Both the passively adaptive structure and the shape of the flexible wing aerofoil are optimised for best aerodynamic performance under aero-structural constraints, within a coupled aeroelastic formulation. A typical flight mission for surveillance purposes is considered and includes the potential occurrence of wind gusts. A metamodel for the high-fidelity objective function and each of the constraints is built, based on a tuned low-fidelity one, in order to improve the efficiency of the optimisation process. Both metamodels are based on solutions of the aeroelastic equations for a flexible aerofoil but employ different levels of complexity and computational cost for modelling aerodynamics and structural dynamics within a modal approach. The high-fidelity model employs nonlinear Computational Fluid Dynamics coupled with a full set of structural modes, whereas the low-fidelity one employs linear thin aerofoil theory coupled with a reduced set of structural modes. The low-fidelity responses are then corrected according to few high-fidelity responses, as prescribed by an appropriate Design of Experiment, by means of a suitable tuning technique. A standard Genetic Algorithm is hence utilised to find the global optimum, showing that a flexible aerofoil is characterised by higher aerodynamic efficiency than its rigid counterpart. Wing weight reduction is also accomplished when a Multiobjective Genetic Algorithm is adopted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号