首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
协同过滤推荐算法是目前应用最为广泛的个性化推荐方法之一,但传统的推荐算法在计算目标用户邻居集时只考虑用户项目评分矩阵中的具体数值,没有考虑用户偏好以及用户评分与项目属性之间的关系,推荐精度也有待进一步提高。针对这一问题,提出了一种基于用户偏好和项目属性的协同过滤推荐算法(UPPPCF)。本算法在传统的用户项目评分矩阵基础上综合考虑用户偏好以及项目属性,把评分矩阵转变成基于用户偏好的用户项目属性评分矩阵,然后根据这一评分矩阵来计算目标用户的最近邻居集,克服了传统相似性计算方法只依靠用户评分值的不足,同时本文对预测值判定给出了一种有效的度量方法。在 MovieLen 数据集上的实验结果表明,本文提出的UPPPCF算法能够有效弥补传统协同过滤算法中的不足,而且在推荐精度上有了明显的提高。  相似文献   

2.
在用户相似度计算基础上,根据用户偏好以及项目特征对用户评分产生的影响,提出一种针对用户项目体验度的推荐算法。阐述项目体验度对用户产生的潜在影响,选择皮尔森相似性计算公式做进一步计算。通过用户对项目的好评数以及给项目的评分分别占该项目的总评数和总体项目评分中的比例,获得用户对项目的体验度权重。采用长尾理论平衡用户相似性和用户对流行项目的关注度,计算得出用户相似度并产生预测和推荐。实验结果表明,与传统协同过滤算法相比,该算法提高了相似度计算准确度,并能改善数据稀疏情况下的推荐效果。  相似文献   

3.
《计算机科学与探索》2017,(10):1642-1651
协同过滤推荐算法面临着严重的数据稀疏性问题,提出一种融合评分倾向度和双重预测的协同过滤推荐算法以解决该问题。在选择最近邻阶段,引入评分倾向度来改进相似性度量方法,更加准确地得到最近邻居集;在推荐生成阶段,利用基于用户最近邻和基于项目最近邻的双重预测方法来进行评分预测,提高预测的准确度。通过在Movie Lens-1M数据集上的实验结果表明:该算法能够缓解数据稀疏性对推荐结果的影响,有效降低平均绝对误差,提高推荐准确率。  相似文献   

4.
基于标签和协同过滤的个性化资源推荐   总被引:1,自引:0,他引:1  
传统的协同过滤算法以用户评分体现用户兴趣偏好及资源相似度,忽视了用户、资源自身的特征,并且对稀疏数据和新资源的推荐质量明显下降。在Web2.0时代下,标签可被用户依个人偏好进行自由资源标注。因此,提出了基于标签和协同过滤的推荐算法。其基本思想是将标签作为体现用户兴趣偏好和资源特征的信息,依据用户、标签及资源的多维关系生成用户及资源的标签特征向量,并计算用户对资源的偏好程度和资源相似度,然后基于用户的历史行为预测用户对其他资源的偏好值,最后依据预测偏好值排序产生Top-N推荐结果。通过与传统的协同过滤算法的比较,验证了本算法能有效缓解数据的稀疏性,解决推荐的冷启动问题,提升推荐的准确性,获得更好的推荐效果。  相似文献   

5.
不同地区的用户兴趣不同,并且当推荐物品具有位置属性时,用户更加倾向于离自身较近的物品。根据用户和物品的位置信息来捕获用户兴趣能有效地提高个性化推荐精度。为了有效处理用户和物品的位置信息,在推荐系统中引入金字塔模型(PS)来实现用户分区和用户旅行代价的计算,提出了基于金字塔模型的协同过滤算法(PMCF),来生成对用户的Top-N物品推荐。使用MovieLens数据集、Foursquare数据集和Synthetic数据集来分别评估算法的有效性,实验表明,所提出的算法的准确度要高于传统的推荐算法。  相似文献   

6.
7.
本文主要从基本思想、算法步骤等方面对基于用户的协同过滤推荐算法和基于项目的协同过滤推荐算法进行了详细介绍,并对其存在的问题进行了总结。  相似文献   

8.
提出一种基于信任机制的协同过滤推荐算法,其中,直接信任度基于共同评价项目得出,推荐信任度通过对项目的预测得出。借鉴社会网络中人与人之间的信任评价方法,使用户之间的相似度计算更加准确,从而为目标用户提供更好的推荐结果。实验结果表明,该模型提高了信任度预测的准确性及系统的推荐质量。  相似文献   

9.
为了解决传统协同过滤算法中存在的严峻的数据稀疏性问题,提出了一种融合社交网络特征的协同过滤推荐算法。该算法在传统矩阵分解模型基础上,通过融合社交网络特征与用户评分偏好程度得到信任和被信任特征矩阵,然后利用社交特征矩阵、商品特征矩阵和用户评分偏好相似性共同预测用户对商品的评分值。为了验证该算法的可靠性,使用Epinions公开数据集对算法性能进行对比分析。实验结果显示,相比现有的社交推荐算法,所提算法有更小的平均绝对误差和均方根误差,同时算法的时间复杂度与数据集的数量之间为线性关系。因此,该算法可以有效缓解数据稀疏性对推荐结果的影响,并提高推荐准确率。在现实推荐中,该算法可以考虑作为大规模数据集进行商品推荐的一个选择方式。  相似文献   

10.
针对传统协同过滤模型中存在的数据稀疏性问题,提出一种基于信任模型填充的协同过滤推荐模型。对信任属性进行研究,通过建立信任模型对评分矩阵进行预填充以提高数据存储密度,利用相似性模型分别从项目和用户属性的角度度量项目相似性,通过自适应协调因子协调处理两方面的相似性度量结果,获得最终的项目预测评分,基于不同的数据集进行实验验证,结果表明,在不同的数据集中,与传统的协同过滤模型相比,该模型能够有效地处理评分矩阵的数据稀疏性问题,提高系统评分预测的准确度,平均改进程度为8%。  相似文献   

11.
张博  刘学军  李斌 《计算机科学》2016,43(4):235-240
协同过滤是现行推荐系统中应用最广泛也是最成功的推荐技术之一,然而传统的协同过滤推荐算法存在着邻居选取片面性和推荐精度低的问题。针对上述问题,提出了一种基于重叠度和双重属性的协同过滤推荐算法。首先基于相似度和重叠度的共同计算结果选取推荐对象集;然后提出了双重属性的概念,分别计算推荐用户的信任度和目标项目的受欢迎度;最后兼顾两个群体,根据用户和项目两方面的评分信息完成对目标用户的推荐。实验结果证明该算法较传统的协同过滤推荐算法在邻居选取和推荐质量方面均有显著的提高。  相似文献   

12.
何明  孙望  肖润  刘伟世 《计算机科学》2017,44(Z11):391-396
协同过滤推荐算法可以根据已知用户的偏好预测其可能感兴趣的项目,是现今最为成功、应用最广泛的推荐技术。然而,传统的协同过滤推荐算法受限于数据稀疏性问题,推荐结果较差。目前的协同过滤推荐算法大多只针对用户-项目评分矩阵进行数据分析,忽视了项目属性特征及用户对项目属性特征的偏好。针对上述问题,提出了一种融合聚类和用户兴趣偏好的协同过滤推荐算法。首先根据用户评分矩阵与项目类型信息,构建用户针对项目类型的用户兴趣偏好矩阵;然后利用K-Means算法对项目集进行聚类,并基于用户兴趣偏好矩阵查找待估值项所对应的近邻用户;在此基础上,通过结合项目相似度的加权Slope One算法在每一个项目类簇中对稀疏矩阵进行填充,以缓解数据稀疏性问题;进而基于用户兴趣偏好矩阵对用户进行聚类;最后,面向填充后的评分矩阵,在每一个用户类簇中使用基于用户的协同过滤算法对项目评分进行预测。实验结果表明,所提算法能够有效缓解原始评分矩阵的稀疏性问题,提升算法的推荐质量。  相似文献   

13.
协作过滤推荐算法是推荐系统中应用最广泛的算法之一。通过分析传统协作过滤算法中由数据稀疏性导致的推荐精度不高的问题,在基于专家信任的协作过滤推荐算法的基础上,提出了一种综合用户特征及专家信任的协作过滤推荐算法。该算法分析了用户的不同特征,比较了用户与专家的相似度,通过计算用户-专家相似度矩阵,有效降低了数据集的稀疏性,提高了预测的准确性。在MovieLens数据集上的实验结果表明,改进的算法能够有效缓解冷启动问题,明显提高了系统的推荐精度。  相似文献   

14.
何明  刘伟世  魏铮 《计算机科学》2016,43(6):257-262
协同过滤是目前应用最广泛和最成功的推荐技术之一。然而,目前该技术的发展面临着严重的冷启动和稀疏性问题,降低了其推荐质量,因此提出了一种基于信任网络随机游走模型的协同过滤推荐方法。该方法融合了基于信任和项目的协同过滤推荐方法,并引入了信任因子作为引导推荐的重要因素。随机游走模型不仅考虑了信任用户对目标项目的评分,也考虑了他们对与目标项目相似的项目的评分。随着随机游走深度的增加,以相似项目的评分信息来代替目标项目的评分信息的概率也逐渐增大。在Epinions真实数据集上的验证结果表明,该方法在推荐评价指标上比其他算法具有更好的推荐结果。  相似文献   

15.
针对传统基于用户的协同过滤推荐算法在大数据环境下存在评分高维稀疏性、推荐精度低的问题,提出一种基于人口统计学数据与改进聚类模型相结合的协同过滤推荐算法,以提高推荐系统精度和泛化能力。该方法首先通过用户人口统计学数据属性,结合用户-项目评分矩阵计算各个用户间的相似度;然后对用户、项目进行分层近邻传播聚类,根据用户对项目的评分数据计算用户或项目之间的相似性,产生目标用户或项目的兴趣近邻;最后根据兴趣最近邻进行推荐。对Epinions,MovieLents等数据集进行仿真实验,仿真的结果表明, 与传统的协同过滤算法相比, 提出的算法提高了推荐精度,为传统的协同过滤推荐算法提供了参考。  相似文献   

16.
基于模糊聚类的协同过滤推荐方法   总被引:9,自引:0,他引:9  
推荐系统是利用用户的历史偏好信息实现个性化服务的系统,它已经成为电子商务和信息获取领域中的重要应用。文中提出了一种通过模糊聚类的方法将项目属性特征的相似性与基于项目的协同过滤推荐技术相结合的推荐方法,首先应用模糊聚类技术对项目聚类,得到项目在属性特征上的相似关系群,然后与用户一项目评分矩阵中的协同相似关系群组合得到综合相似关系群,最后,利用综合相似关系群为目标用户推荐项目。实验结果表明,该方法不仅可有效改善基于项目的协同过滤推荐算法面临的“冷启动”问题,而且确实提高了推荐系统的推荐精度。  相似文献   

17.
吴正洋  汤庸  方家轩  董浩业 《计算机科学》2015,42(9):204-207, 225
协同过滤推荐是一种基于用户偏好的个性化推荐方法,一般包含两个步骤:首先根据用户或项目的标注信息计算出用户或项目的相似度,确定邻居集合;然后根据相似度进行排序推荐,其核心问题在于相似度的计算。为了更好地达到这一目的,近年来关于将用户社交网络信息融入相似度计算的方法受到广泛关注。用户的注册信息、项目评分和社交信息都可以作为用户比较的依据。基于此提出了通过构建用户本体,计算本体之间的语义相似度,从而找到相似用户集合,最终实现目标用户的推荐方法。该方法为本体技术与推荐系统的结合提供了一种思路,实验表明 它能够在一定程度上提高推荐的准确度。  相似文献   

18.
张峻玮  杨洲 《计算机科学》2014,41(12):176-178
为了降低组用户推荐的计算时间,提出了一种改进的层次聚类协同过滤用户推荐算法。由于数据的稀疏性,传统的聚类方法在尝试划分用户群时效果不理想。考虑到传统聚类算法的聚类中心不变组内用户间相关度不高等问题,将用户进行聚类,然后按照分类计算出每个用户的推荐结果,在进行聚类的同时充分利用用户间的信息传递来增强组内用户的信息共享,最后将组内所有的用户的推荐结果进行聚合。最后仿真实验表明,本方法能够有效地提高推荐的准确度,比传统的协同过滤算法具有更高的执行效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号