首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new cellulose acetate propionate (CAP) polymer has been synthesized and used to prepare high‐performance forward osmosis (FO) membranes. With an almost equal degree of substitution of acetyl and propionyl groups, the CAP‐based dense membranes show more balanced physicochemical properties than conventional cellulose acetate (CA)‐based membranes for FO applications. The former have a lower equilibrium water content (6.6 wt. %), a lower salt diffusivity (1.6×1014 m2 s?1) and a much lower salt partition coefficient (0.013) compared with the latter. The as‐prepared and annealed CAP‐based hollow fibers have a rough surface with an average pore radius of 0.31 nm and a molecular weight cut off of 226 Da. At a transmembrane pressure of 1 bar, the dual‐layer CAP‐CA hollow fibers show a pure water permeability of 0.80 L m?2 h?1 bar?1 (LMH/bar) and a rejection of 75.5% to NaCl. The CAP‐CA hollow fibers were first tested for their FO performance using 2.0 M NaCl draw solution and deionized water feed. An impressive water flux of 17.5 L m?2 h?1 (LMH) and a reverse salt flux of 2.5 g m?2 h?1 (gMH) were achieved with the draw solution running against the active CAP layer in the FO tests. The very low reverse salt flux is mainly resulting from the low salt diffusivity and salt partition coefficient of the CAP material. In a hybrid system combining FO and membrane distillation for wastewater reclamation, the newly developed hollow fibers show very encouraging results, that is, water production rate being 13–13.7 LMH, with a MgCl2 draw solution of only 0.5 M and an operating temperature of 343 K due to the incorporation of bulky propionyl groups with balanced physiochemical properties. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1245–1254, 2013  相似文献   

2.
A novel forward (direct) osmosis (FO) desalination process is presented. The process uses an ammonium bicarbonate draw solution to extract water from a saline feed water across a semi-permeable polymeric membrane. Very large osmotic pressures generated by the highly soluble ammonium bicarbonate draw solution yield high water fluxes and can result in very high feed water recoveries. Upon moderate heating, ammonium bicarbonate decomposes into ammonia and carbon dioxide gases that can be separated and recycled as draw solutes, leaving the fresh product water. Experiments with a laboratory-scale FO unit utilizing a flat sheet cellulose tri-acetate membrane demonstrated high product water flux and relatively high salt rejection. The results further revealed that reverse osmosis (RO) membranes are not suitable for the FO process because of relatively low product water fluxes attributed to severe internal concentration polarization in the porous support and fabric layers of the RO membrane.  相似文献   

3.
A series of carboxyethyl amine sodium salts (CASSs) with different carboxyl group numbers are synthesized as draw solutes for forward osmosis (FO) application. Their chemical structures are examined by 1HNMR and HRMS. FO performances are investigated and compared in terms of different physicochemical properties. The effects of the CASS concentration on the osmotic pressure and viscosity of the draw solutions, as well as the resulted FO performance are also systematically investigated. A high water flux of 23.07 LMH and an acceptable reverse salt flux of 0.75 gMH can be achieved with 0.5 g mL?1 triethylenetetramine hexapropionic acid sodium (TTHP‐Na) draw solution under PRO mode, which is superior to most other draw solutes reported in previous literatures. TTHP‐Na draw solution is further evaluated to recycle the Congo red solution via FO process to examine its applicability for waste water treatment. © 2015 American Institute of Chemical Engineers AIChE J, 62: 1226–1235, 2016  相似文献   

4.
Cellulose acetate (CA) is a low cost and readily available material widely used in forward osmosis (FO) membranes. However, the performance of pure CA membranes is not good enough in salt separation and the traditional modification methods are generally multistep and difficult to control. In this paper, we reported high performance cellulose acetate (CA) composite forward osmosis (FO) membranes modified with polyvinyl alcohol (PVA) and polydopamine (PDA). PVA was first cross-linked onto the surface of CA membranes, and then PDA was coated with a rapid deposition method. The membranes were characterized with respect to membrane chemistry (FTIR and XPS), surface properties comprising wettability (by water contact angle), and osmosis performance. The modified membrane coated by PVA and PDA shown better hydrophilicity and exhibited 16.72 LMH osmotic water flux and 0.14 mMH reverse solute flux with DI water as feed solution and 2.0 M NaCl as draw solution and active layer facing the feed solution. This simple and highly effective modification method makes it as an excellent candidate for further exploration for FO.  相似文献   

5.
The poly(2‐hydroxyethyl methacrylate) grafted titanium dioxide nanoparticles were synthesized and added to the substrate of flat‐sheet thin film composite forward osmosis (TFC‐FO) membranes. The hydrophilicity of substrate was improved, which was advantageous to enhance the water flux of TFC‐FO membranes. The membranes containing a 3 wt % TiO2‐PHEMA in the substrate exhibited a finger‐like structure combined with sponge‐like structure, while those with lower or without TiO2‐PHEMA content showed fully finger‐like structures. As for FO performance, the TFC‐FO membranes with 3 wt % TiO2‐PHEMA content achieved the highest water flux of 42.8 LMH and 24.2 LMH against the DI water using 2M NaCl as the draw solution tested under the active layer against draw solution (AL‐DS) mode and active layer against feed solution (AL‐FS) mode, respectively. It was proven that the hydrophilic property of membrane substrates was a strong factor influencing the water flux in FO tests. Furthermore, the structural parameter was remarkably decreased with an increase of TiO2‐PHEMA content in membrane substrate, indicating the reducing of internal concentration polarization. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43719.  相似文献   

6.
Cellulose triacetate (CTA) forward‐osmosis (FO) membranes were prepared via the phase inversion method. The influence of thickness on the performance and morphology of CTA FO membranes was discussed in detail. When the thickness of the membrane was 50.0 ± 0.5 μm (CTA4), the prototype CTA membranes displayed a water flux of 20.2 L m?2 h?1 and a reverse salt transport of 14.6 g m?2 h?1 using 1 mol/L NaCl as the draw solution and deionized water as the feed solution during the FO process at 25 °C. In addition, the high‐performance CTA4 FO membranes have been used to process spent electroless nickel plating baths where the water flux could reach 13 L m?2 h?1 and NiSO4·6H2O crystals occurred in the feed solution of the spent electroless nickel plating baths. The recovery rates of NiSO4·6H2O and water from the spent electroless nickel plating baths were 44.54% and 53.53%, respectively. This study focused on improving membrane design for the FO process and finding a new method of waste liquor or wastewater treatment. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45049.  相似文献   

7.
In this study, we investigated the essential role of feed solution pH so as to gain insights into the transport mechanisms of succinic acid concentration by osmotically-driven forward osmosis(FO) process. FO performances including water flux and bidirectional transport of succinate and chloride anions were systematically examined using cellulose triacetate-based FO membrane. Additionally, real seawater was explored as draw solution. Experimental results revealed that the p H-dependent speciation of succinic acid can affect the FO performances. Ionization of succinic acid at higher solution p H enhanced the osmotic pressure of feed solution, thus leading to lower water flux performance. A strong effect was pointed out on the succinate rejection for which nearly 100% rejections were achieved at p H above its pK_(a2) value. The rejection of succinate increased in the following order of chemical form: C_2H_4 C_2O_4H_2 C_2H_4C_2O_4H~ˉ C_2H_4C_2O_4~(2-).With real seawater as the draw solution, low to moderate water fluxes(4 L·m~(-2)·h~(-1)) were observed.The divalent succinate anion was highly retained in the feed side despite differences in the succinic acid feed concentration at p H of approximately 6.90.  相似文献   

8.
Forward osmosis (FO), as one of the emerging desalination technologies, has the potential to produce freshwater from a variety of water sources by utilizing the osmotic pressure gradient across a semi-permeable membrane. Drawsolution, as an essential component of any FO process, can extract watermolecules fromseawater orwastewater. An ideal draw solution should meet three essential requirements, namely high osmotic pressure, low reverse flux, and facile regeneration mechanism. The selection of proper draw solutes is especially critical for an energy-efficient FO process since the energy consumption mostly arises from the separation or regeneration of the draw solution. Recently, we developed a few multi-functional FO draw solutes, mainly aiming to enhance the FO water flux and to explore facile re-concentration methods. This review summarizes these draw solutes, including Na+-functionalized carbon quantum dots, thermoresponsive copolymers, hydrophilic magnetic nanoparticles, and thermoresponsive magnetic nanoparticles.  相似文献   

9.
The development of suitable draw solutes for forward osmosis (FO) process is a big obstacle on the way of its real industrialization. In this work, a novel draw solute, ethylenediamine tetrapropionic (EDTP) acid (salt) is developed for FO application. The successful synthesis is confirmed by Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and high resolution mass spectrum. By optimizing the pH of EDTP solution, its composition is varied, and therefore, its water solubility and osmotic pressure are effectively improved. The effects of EDTP concentration on the osmotic pressure and FO performance are also investigated. Its outstanding osmotic pressure and big molecular size result in a high water flux of 22.69 LMH and a low salt flux of 0.32 gMH with 0.8 M EDTP draw solution (water as the feed solution, pressure retarded osmosis mode). The good stability and easy recovery by nanofiltration of EDTP solution also demonstrate its great potential as the draw solute for future FO applications. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1309–1321, 2015  相似文献   

10.
In the present study, regenerated cellulose membrane with “imprinted morphology” and low crystallinity was fabricated from the crystal cellulose/[Bmim]Cl solution. Spherulites of 1‐butyl‐3‐methilimidazolium chloride ([Bmim]Cl) and cellulose/[Bmim]Cl solution were observed using polarized optical microscopy under certain condition. The fabricated cellulose membranes presented some particular characteristics compared with the membrane prepared from traditional cellulose/[Bmim]Cl solution. All the fabricated membranes were characterized by optical microscope, Wide‐angle X‐ray diffraction (WAXD), thermo‐gravimetric analysis, and mechanical testing. The images showed that the resulting membranes prepared from crystal cellulose/[Bmim]Cl solution were “imprinted” with patterns which originated from the crystalline structure of [Bmim]Cl. The results of WAXD showed that the obtained cellulose membrane exhibited low diffraction peaks and crystallinity of approximately 24.57%. Furthermore, the low crystallinity led to the low mechanical property (27.5 MPa), thermal stability (315.4 °C), and high moisture regain (9.5%). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43798.  相似文献   

11.
There has been a resurgence of interest in forward osmosis (FO) as a potential means of desalination, dewatering and in pressure retarded osmosis, which Sidney Loeb was advocating over 3 decades ago. This paper describes the characteristics and potential applications of a newly developed FO hollow fiber membrane, which was fabricated by interfacial polymerization on the inner surface of a polyethersulfone (PES) hollow fiber. This FO membrane presents excellent intrinsic separation properties, with a water flux of 42.6 L/m2 h using 0.5 M NaCl as the draw solution and DI water as the feed with the active layer facing the draw solution orientation at 23 °C. The corresponding ratio of salt flux to water flux was only 0.094 g/L, which is superior to all other FO membranes reported in the open literature. To evaluate different application scenarios, various NaCl solutions (500 ppm (8.6 mM), 1 wt.% (0.17 M) and 3.5 wt.% (0.59 M)) were used as the feed water to test the performance of the FO membrane. The membrane can achieve a water flux of 12.4 L/m2 h with 3.5 wt.% NaCl solution as the feed and 2 M NaCl as the draw solution, suggesting it has good potential for seawater desalination.  相似文献   

12.
Development and use of novel membranes for forward osmosis (FO) applications have gained popularity throughout the world. To enhance FO membrane performance, a novel thin-film nanocomposite membrane was fabricated by interfacial polymerization incorporating Fullerenol (C60(OH)n) nanomaterial, having n in the range of 24–28 into the active layer. Different concentrations of fullerenol loading (100, 200, 400, and 800 ppm) were added to the top skin layer. The structural and surface properties of the pure thin-film composite membrane (TFC) and fullerenol-incorporated thin-film nanocomposite (FTFC) membranes, were characterized by ATR-FTIR, SEM, and AFM. FO performance and separation properties were evaluated in terms of water flux, reverse salt flux, antifouling propensity, water permeability and salt permeability for all TFC and FTFC membranes. Osmotic performance tests showed that FTFC membranes achieved higher water flux and reverse salt flux selectivity compared with those of TFC membranes. The FTFC membrane with a fullerenol loading of 400 ppm exhibited a water flux of 26.1 L m?2 h?1 (LMH), which is 83.03% higher than that of the TFC membrane with a specific reverse salt flux of 0.18 g/L using 1 M sodium chloride draw solution against deionized water in FO mode. The fullerenol incorporation in FTFC membranes also contributed to a decreased fouling propensity.  相似文献   

13.
Forward osmosis (FO) membranes were prepared by a coating method with poly(ethylene glycol) crosslinked sulfonated polysulfone (SPSf) as a selective layer. The poly(ether sulfone)/SPSf substrate was prepared by phase inversion. The composite membranes were characterized with respect to membrane chemistry (by attenuated total reflectance/Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy), hydrophilicity (by static contact angle measurement), and surface morphology (by scanning electron microscopy and atomic force microscopy). The FO performance was also characterized. The effects of the crosslinker concentration on the hydrophilicity and FO performance were investigated. The crosslinked membrane exhibited a high hydrophilicity with a lowest contact angle of 15.5°. Under FO tests, the membranes achieved a higher water flux of 15.2 L m?2 h?1 when used against deionized water as the feed solution and a 2 mol/L sodium chloride (NaCl) solution as the the draw solution. The membranes achieved a magnesium sulfate rejection of 96% and an NaCl rejection of 55% when used against a 1 g/L inorganic salt solution as the feed solution and a 2 mol/L glucose solution as the draw solution. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43941.  相似文献   

14.
In this study, we discuss the preparations of cellulosic membranes from cellulose acetate (CA), cellulose triacetate (CTA) and cellulose acetate blend (CAB) [blending of CA and CTA] systems and their potential for concentration of simulated ammonium-diuranate (ADU) effluent solution (only uranium and ammonium nitrate) by FO. The membranes are prepared using casting solution of polymers in mixed solvent systems with gelling in ice-cold water followed by annealing in 80°C hot water. Prepared membranes are characterized in terms of separation performance (tested under brackish water reverse osmosis test condition), water contact angle and surface average roughness. The performance of the membranes are evaluated in terms of volume reduction factor using solution of 40,000 ppm of NH4NO3 and 20 ppm uranium as feed and 320000ppm of NH4NO3 as draw solution. It is found that the volume reduction factor increases in the order of CTA<CAB<CA membranes. The effect of different draw solutions on volume reduction for the same system using CA membrane is also evaluated. Almost no leaching of uranium is found to the draw solution side for all the membranes. Possibility of using the FO process in a simpler way (as membrane pouch) to concentrate this simulated ADU filtered solution has been ascertained.  相似文献   

15.
钟铭  尤世界  王秀蘅  钟溢健 《化工学报》2012,63(10):3143-3151
正向渗透(FO)是一种以溶液自身渗透压作为推动力的膜分离技术。温度对溶液、膜的性质以及溶液与膜之间的相互作用有很大影响,进而影响FO的水通量。利用数值模拟与试验研究了温度对FO性能的影响。结果表明,当膜两侧等温时,FO水通量随着温度的升高而增大;当膜两侧不等温时,原液(FS)一侧温度的影响比提取液(DS)一侧更大,主要是因为温度升高降低了溶液黏度,强化了过膜扩散过程,而温度对DS渗透压的影响不明显。在不同温度条件下,FO水通量和热通量随流量的增大而增大,主要是由于流速的增大压缩膜表面的流体边界层,强化了传质和传热过程。  相似文献   

16.
正渗透是以渗透压差为驱动力的新型膜分离过程。采用水流分布较佳的膜池结构,研究了膜朝向、流动方式对正渗透水通量性能的影响,结果表明PRO模式(当膜的活性层朝向驱动液时)的水通量明显高于FO模式(当膜的活性层朝向原料液时),但其衰减程度较大;在溶液浓度差相同的条件下,逆流操作更利于水通量的提高。针对FO模式和逆流条件,探讨了溶液温度对水通量和反向盐通量的影响,结果表明:膜两侧溶液温度同步升高时,正渗透过程的水通量和反向盐通量均增加,且水通量的增加幅度大于反向盐通量;单侧增加溶液的温度时,驱动液侧温度升高对水通量性能的提升效果优于原料液侧。综合考虑过程能耗和系统性能,认为单独升高驱动液温度更具实用价值。  相似文献   

17.
The application of “active-layer-facing-draw-solution” (AL-DS) mode, which allows a considerably high water flux in forward osmosis (FO) processes, is hindered by severe fouling occurring within the porous support of the FO membranes. We designed a series of “three-dimensionally” antifouling FO membranes by an extremely convenient and scalable approach, by using in situ reduced aliphatic polyketone (PK) membranes (rPK) and the silver-nanoparticles-immobilized rPK-Ag membranes as the substrates for thin-film composite (TFC) FO membrane preparation. This modification imparted enhanced hydrophilicity compared with the original PK-TFC membrane, without affecting the morphology and transport properties. Benefiting from the three-dimensional antifouling structure, the modified TFC membranes (i.e., rPK-TFC and rPK-Ag-TFC membranes) demonstrated excellent and comprehensive fouling resistance towards a variety of organic foulants, as well as biofouling resistance towards Escherichia coli. These results provide useful insights into the fabrication of antifouling FO membranes for water purification purposes and pressure retarded osmosis (PRO) process.  相似文献   

18.
The objective of this study is to investigate the effect of solution chemistry of branched polyethyleneimine (PEI) draw solute and to evaluate the PEI draw solute in a combined forward osmosis (FO)/nanofiltration (NF) system. Pure water was extracted from feed solution using the FO process, and the separation of pure water was achieved by the NF process. Lower molecular weight PEI showed higher water flux than higher molecular weight PEI, due to the lower internal concentration polarization caused by a higher diffusion rate and the easy permeation of pure water by lower viscosity of the draw solution (DS). The FO water flux was determined by the osmotic pressure induced by protonation/deprotonation of PEI, and the reverse draw solute flux was determined by the combination of PEI size due to the speciation and electrostatic interaction between the membrane and PEI. This study shows that the Js/Jw value of PEI at pH 7 was smaller than those of sodium chloride and magnesium sulfate. The recovery of PEI DS using NF has a higher value (99.4%) than of sodium chloride (20.6%) and magnesium sulfate (97.0%); this means that PEI would be a promising draw solute in an FO–NF combined system for the saline water desalination. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42198.  相似文献   

19.
A new scheme has been developed to fabricate high‐performance forward osmosis (FO) membranes through the interfacial polymerization reaction on porous polymeric supports. p‐Phenylenediamine and 1,3,5‐trimesoylchloride were adopted as the monomers for the in‐situ polycondensation reaction to form a thin aromatic polyamide selective layer of 150 nm in thickness on the substrate surface, a lab‐made polyethersulfone (PES)/sulfonated polysulfone (SPSf)‐alloyed porous membrane with enhanced hydrophilicity. Under FO tests, the FO membrane achieved a higher water flux of 69.8 LMH when against deionized water and 25.2 LMH when against a model 3.5 wt % NaCl solution under 5.0 M NaCl as the draw solution in the pressure‐retarded osmosis mode. The PES/SPSf thin‐film‐composite (TFC)‐FO membrane has a smaller structural parameter S of 238 μm than those reported data. The morphology and topology of substrates and TFC‐FO membranes have been studied by means of atomic force microscopy and scanning electronic microscopy. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

20.
正向渗透是一项新型的利用半透膜两侧溶液渗透压差作为驱动力的膜分离技术。文章介绍了正向渗透膜分离技术的原理和影响因素,对其在各个领域(包括海水淡化、废水处理、橙汁浓缩、水袋)的研究进展进行了综述。现有的研究表明,可用于正向渗透工艺的膜不同于常规的反渗透膜,需要从膜结构开发适合的膜组件;采用NH3和CO2制备提取液是目前研究中具有应用前途的方式之一,具有产水率高且易于分离浓缩的优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号